

NARAYANA ENGINEERING COLLEGE::GUDUR

DEPARTMENT OF MECHANICAL ENGINEERING

Course Structure for B.Tech ME w.e.f AY: 2021-22

SEMESTER I

Course Code	gory	Course Title	Contact Periods per week				dits	Scheme of Examination Max. Marks		
Course Coue	Cate	Course Title	L	Т	Р	Total	Cre	Int. Marks	Ext. Marks	Total marks
21MA1001	BS	Algebra and Calculus	3	1	0	4	4	40	60	100
21CH1003	BS	Chemistry for Mechanical Engineering	3	0	0	3	3	40	60	100
21ES1001	ES	Problem Solving and Programming	3	0	0	3	3	40	60	100
21EN1001	HS	English	2	0	0	2	2	40	60	100
21CH1503	BS	Chemistry for Mechanical Engineering Lab	0	0	3	3	1.5	40	60	100
21ES1504	ES	Engineering Drawing	0	1	4	5	3	40	60	100
21ES1501	ES	Problem Solving and Programming Lab	0	0	3	3	1.5	40	60	100
21EN1501	HS	English Language Lab	0	0	3	3	1.5	40	60	100
21MC8001	MC	Mandatory course I	Induction Program							
		Counselling/Mentoring	0	0	1	1	0			
		Sports/Hobby Clubs/Activities	0	0	2	2	0			
		Activity Point Programme	During the Semest				ter 20 Points		S	
		Total	11	2	16	29	19.5	320	480	800

Course Code	gory	Course Title	C	Contact Periods per week			dits	Scheme of Examination Max. Marks			
Course Coue	Cate	Course True	L	Т	Р	Total	Cre	Int. Marks	Ext. Marks	Total marks	
21PH1003	BS	Physics for Mechanical Engineering	3	0	0	3	3	40	60	100	
21MA1003	BS	Vector calculus, Complex variables and Transforms	3	1	0	4	4	40	60	100	
21ES1006	ES	Material Science and Engineering	3	0	0	3	3	40	60	100	
21ES1004	ES	Basics of Electrical and Electronics Engineering	3	0	0	3	3	40	60	100	
21PH1503	BS	Physics for Mechanical Engineering Lab	0	0	3	3	1.5	40	60	100	
21ES1510	ES	Engineering Workshop	0	0	3	3	1.5	40	60	100	
21ES1511	ES	IT Workshop	0	0	3	3	1.5	40	60	100	
21ES1509	ES	Material Science and Engineering Lab	0	0	2	2	1	40	60	100	
21EN1502	HS	Communications Skills Lab	0	0	2	2	1	40	60	100	
21MC8002-13	MC	Mandatory course II	2	0	0	2	0				
		Counselling/Mentoring	0	0	1	1	0				
		Sports/Hobby Clubs/Activities	0	0	2	2	0				
		Activity Point Programme	During the Seme			During the Semester			er 20 Points		
		Total	14	1	16	31	19.5	360	540	900	

SEMESTER II

SEMESTER III

	gory	Course Title	C	onta pe	ict P r we	eriods eek	lits	Scheme M	of Exan ax. Mar	nination ks
Course Code	Categ	Course Title	L	Т	Р	Total	Cred	Int. Marks	Ext. Marks	Total Marks
21MA1006	BS	Probability, Statistics and Numerical methods	3	0	0	3	3	40	60	100
21ES1008	ES	Engineering Mechanics	3	1	0	4	4	40	60	100
21ES1011	ES	Thermodynamics	3	0	0	3	3	40	60	100
21EN1002	HS	Universal Human Values	3	0	0	3	3	40	60	100
21ME2001	PC	Fluid Mechanics and Hydraulic Machines	3	0	0	3	3	40	60	100
21ME2002	PC	Manufacturing Processes	2	0	0	2	2	40	60	100
21ES1515	ES	Computer Aided Drafting and Modeling Lab	0	0	3	3	1.5	40	60	100
21ME2501	PC	Fluid Mechanics and Hydraulic Machines Lab	0	0	3	3	1.5	40	60	100
21ME2502	PC	Manufacturing Processes Lab	0	0	3	3	1.5	40	60	100
21CD6001	SC	Career Competency Development I	0	0	2	2	1	40	60	100
21CC6001	SC	Value Added Course/ Certificate Course I	0	0	0	0	1	40	60	100
		Counselling/Mentoring	0	0	1	1	0			
		Sports/Hobby Clubs/Activities	0	0	2	2	0			
		Activity Point Programme	During the Semes			During the Semester		2	25 Points	·
		Total	17	1	14	32	24.5	440	660	1100

Course Code	egory	Course Title		Contact Periods per week				Scheme of Examination Max. Marks		
	Cat		L	Т	Р	Total	Cr	Int. Marks	Ext. Marks	Total Marks
21ME2003	PC	Kinematics of Machinery	3	0	0	3	3	40	60	100
21ME2004	PC	Mechanics of Solids	3	0	0	3	3	40	60	100
21ME2005	PC	Metal Forming Processes	3	0	0	3	3	40	60	100
21ME2006	PC	Thermal Engineering	3	0	0	3	3	40	60	100
	OE	Open Elective I	3	0	0	3	3	40	60	100
21ME2503	PC	Computer Aided Machine Drawing	0	0	3	3	1.5	40	60	100
21ME2504	PC	Thermal Engineering Lab	0	0	3	3	1.5	40	60	100
21ME2505	PC	Mechanics of Solids Lab	0	0	3	3	1.5	40	60	100
21IC6001	SC	Industry Oriented Course I	0	0	0	0	1	100		100
21CD6002	SC	Career Competency Development II	0	0	2	2	1	40	60	100
21MC8002-13	MC	Mandatory course III	2	0	0	2	0			
		Counselling/Mentoring	0	0	1	1	0			
		Sports/Hobby Clubs/Activities	0	0	2	2	0			
		Activity Point Programme	During the Semes			ter	20 Points		8	
		Total	17	0	14	31	21.5	460	540	1000

SEMESTER IV

Course Code	gory		C	onta pe	ct P r we	eriods ek	lits	Scheme of Examination Max. Marks			
Course Code	Categ	Course Title	L	T	Р	Total	Cred	Int. Marks	Ext. Marks	Total Marks	
21ME2007	PC	Design of Machine Elements	3	0	0	3	3	40	60	100	
21ME2008	PC	Machine Tools	2	0	0	2	2	40	60	100	
21ME2009	PC	hermal Power Systems		0	0	3	3	40	60	100	
21ME4001-06	PE	Professional Elective I	3	0	0	3	3	40	60	100	
	OE	Open elective II	3	0	0	3	3	40	60	100	
21ME2506	PC	CAD and Simulation Lab	0	0	2	2	1	40	60	100	
21ME2507	PC	Design Thinking and Product Innovation Lab	0	0	3	3	1.5	40	60	100	
21ME2508	PC	Machine Tools Lab	0	0	3	3	1.5	40	60	100	
21CD6003	SC	Career Competency Development III	0	0	2	2	1	40	60	100	
21CC6002	SC	Value Added Course/ Certificate Course II	0	0	0	0	1	40	60	100	
21ME7501	PR	Internship I/on job training/Com Ser Project	0	0	0	0	1.5	00	100	100	
		Counselling/Mentoring	0	0	1	1	0				
		Sports/Hobby Clubs/Activities	0	0	2	2	0				
		Activity Point Programme	During the Semes			During the Semester		ster 25 Points		ts	
		Total	14	0	13	27	21.5	400	700	1100	

SEMESTER V

Course Code	tegory	Course Title	C	onta pe	ct P r we	eriods æk	redits	Scheme of Examination Max. Marks		
	Cat		L	Т	Р	Total	CI	Int. Marks	Ext. Marks	Total Marks
21ME2010	PC	Computer Integrated Manufacturing	3	0	0	3	3	40	60	100
21ME2011	РС	Design of Transmission Systems	3	0	0	3	3	40	60	100
21ME2012	PC	Dynamics of Machinery	3	0	0	3	3	40	60	100
21ME2013	PC	Heat Transfer	2	0	0	2	2	40	60	100
21ME4007-12	PE	Professional Elective II	3	0	0	3	3	40	60	100
	OE	Open Elective III	3	0	0	3	3	40	60	100
21ME2509	PC	Computer Aided Manufacturing Lab	0	0	3	3	1.5	40	60	100
21ME2510	PC	Heat Transfer Lab	0	0	2	2	1	40	60	100
21IC6002	SC	Industry Oriented Course II	0	0	0	0	1	100		100
21CD6004	SC	Career Competency Development IV	0	0	2	2	1	40	60	100
21MC8002- 13	MC	Mandatory course IV	2	0	0	2	0			
		Counselling/ Mentoring	0	0	1	1	0			
		Sports/ Hobby Clubs/Activities	0	0	2	2	0			
		Activity Point Programme	During the Se				emeste	er	25 Points	
		Total	19	0	10	29	21.5	460	540	1000

SEMESTER VI

Course Code	egory	Course Title	Contact Periods per week			edits	So Exami	cheme o ination Marks	of Max.	
	Cat		L	Т	Р	Total	Cr	Int. Marks	Ext. Marks	Total Marks
21HS5001-05	HS	Humanities and Social Science Elective	2	0	0	2	2	40	60	100
21ME2014	PC	Metrology and Measurements	3	0	0	3	3	40	60	100
21ME4013-18	PE	Professional Elective III	3	0	0	3	3	40	60	100
21ME4019-24	PE	Professional Elective IV	3	0	0	3	3	40	60	100
21ME4025-30	PE	Professional Elective V	3	0	0	3	3	40	60	100
	OE	Open Elective IV	3	0	0	3	3	40	60	100
21ME2511	PC	Software Tools Lab	0	0	2	2	1	40	60	100
21ME2512	PC	Metrology and Measurements Lab	0	0	3	3	1.5	40	60	100
21CD6005	SC	Career Competency Development V	0	0	2	2	1	40	60	100
21CC6501	SC	Skill Development Training	0	0	2	2	1	40	60	100
21ME7502	PR	Internship II/on job training/Com Ser Project	0	0	0	0	1.5	00	100	100
		Counselling/Mentoring	0	0	1	1	0			
		Sports/Hobby Clubs/Activities	0	0	2	2	0			
		Activity Point Programme	During the Se				emest	er	20 Points	
		Total	17 0 12 29				23	400	700	1100

SEMESTER VII

SEMESTER VIII

Course Code	ategory	Course Title		Contact Periods per week		Credits	S	cheme Exami n M Maı	of natio ax. :ks	
	C		L	Т	Р	Total		Int. Marks	Ext. Marks	Total Marks
21ME7503	PR	Project work, seminar and internship	0	0	0	0	12	60	140	200
			0	0	0	0	12	60	140	200

Open Electives (OE) offered by ME Department

S. No	Course Code	Subject
1	21ME3001	Engineering Optimization
2	21ME3002	Introduction to Mechatronics
3	21ME3003	Industrial Engineering and Management
4	21ME3004	Automobile Engineering
5	21ME3005	Basics of Mechanical Engineering
6	21ME3006	Automation and Robotics
7	21ME3007	Engineering materials
8	21ME3008	Total Quality Management
9	21ME3009	Industrial Safety and Hazard Management

PROFESSIONAL ELECTIVE (PE)

The Professional Elective Courses (PE) are shown in different tracks/groups: The students will have options of selecting the electives from the different tracks/groups depending on the specialization one wishes to acquire.

ELECTIVE	Professional	Professional	Professional	Professional	Professional
TRACK/GROUP	Elective-1	Elective-2	Elective-3	Elective-4	Elective-5
Design Engineering	Product Design & Development (20ME4001)	Design of Material Handling Equipment (20ME4007)	Finite Element Methods (20ME4013)	Computational Fluid Dynamics (20ME4019)	Geometric dimensioning an tolerancing (20ME4025)
Thermal Engineering	Gas turbines andJet Propulsion (20ME4002)	Power plant Engineering (20ME4008)	Refrigeration & AirConditioning (20ME4014)	Hydraulic & pneumatics Systems Q0ME4020)	Automobile Engineering (20ME4026)
Production Engineering	Fundamentals of Additive Manufacturing (20ME4003)	Modern Manufacturing Methods (20ME4009)	Automation In Manufacturing (20ME4015)	Surface Engineering (20ME4021)	Manufacturing & Inspection Of Gears (20ME4027)
Industrial Engineering	Management Science (20ME4004)	Engineering Optimization (20ME4010)	Industrial Engineering (20ME4016)	Production & Operation Management (20ME4022)	Industrial Management (20ME4028)
CAD/CAM	Flexible Manufacturing Systems (20ME4005)	Mechatronics (20ME4011)	Intelligent Manufacturing Systems (20ME4017)	Automation &Robotics (20ME4023)	Computer Aided Process Planning (20ME4029)
Materials Engineering	Principles of Metal Extraction& Refining (20ME4006)	Metallurgy (20ME4012)	Composite Materials (20ME4018)	Nano materials (20ME4024)	Smart Materials (20ME4030)

LIST OF HONOR SUBJECTS

S. NO.	COURSE NAME	Course Code	CREDITS
1	Alternate fuels and Emissions Control in	21MEH001	4
	Automotive		
2	Robotics and Applications in Manufacturing	21MEH002	4
3	Product Marketing	21MEH003	4
4	Additive Manufacturing	21MEH004	4
5.	Mechanics of Composite Materials	21MEH005	4

LIST OF MINOR SUBJECTS

S. NO	SUBJECT	Course Code	CREDITS
1	Thermodynamics	21MEM001	3
2	Manufacturing Processes	21MEM002	3
3	Material Science and Engineering	21MEM003	3
4	Design of Machine Element	21MEM004	3

Humanities and Social Science Elective

S. NO	SUBJECT	Course Course Code	CREDITS
1	Managerial Economics & Financial Analysis	21HS5001	3
2	Management Science	21HS5002	3
3	E-Business	21HS5003	3
4	Organizational Behavior	21HS5004	3
5	Enterprise Resource Planning	21HS5005	3

HUMANITIES AND SOCIAL SCIENCES (HS)

SEMESTER	SUBJECT	Course Code	CREDITS
т	English	21EN1001	2
I	English Language Lab	21EN1501	1.5
II	Oral Communications Skills Lab	21EN1502	1
IV	Universal Human Values	21EN1002	3
VII	Humanities and Social Science Elective	21HS5001-08	2
	TOTAL		9.5

21CH1503

21MA1003

21PH1003

21MA1006

Π

III

lab

and Transforms

methods

CREDITS 4

3

1.5

4

3

1.5

3

20

SEMESTER	SUBIECT	Course
SEMESTER	Separate	Code
	Algebra and Calculus	21MA1001
Ι	Chemistry for Mechanical Engineering	21CH1003

BASIC SCIENCES (BS)

Chemistry for Mechanical Engineering

Vector Calculus, Complex Variables

Physics for Mechanical Engineering

Probability, Statistics and Numerical

ENGINEERING SCIENCES (ES)

TOTAL

Physics for Mechanical Engineering Lab 21PH1503

SEMESTER	SUBJECT	Course Code	CREDITS
	Problem Solving and Programming	21ES1001	3
Ι	Engineering Drawing Lab	21ES1504	3
	Problem Solving and Programming Lab	21ES1501	1.5
	Material Science and Engineering	21ES1006	3
п	Basics of Electrical and Electronics Engineering	21ES1004	3
	Engineering Workshop	21ES1510	1.5
	IT Workshop	21ES1511	1.5
	Material Science and Engineering Lab	21ES1509	1
	Engineering Mechanics	21ES1008	4
111	Thermodynamics	21ES1011	3
	Computer Aided Drafting and Modelling Lab	21ES1515	1.5
VII	Software Tools Lab	21ES1516	1
	TOTAL		27

PROFESSIONAL CORE (PC)

SEMESTER	Course Code	SUBJECT	CREDITS				
	21ME2001	Manufacturing Processes	2				
III	21ME2002	Fluid Mechanics and Hydraulic Machines	3				
	21ME2502 Manufacturing Processes Lab						
	21ME2501	Fluid Mechanics and Hydraulic Machines Lab	1.5				
	21ME2003	Kinematics of Machinery	3				
	21ME2004	Mechanics of Solids	3				
	21ME2005	Metal Forming Processes	3				
IV	21ME2006	Thermal Engineering	3				
1.	21ME2503	Computer Aided Machine Drawing Lab	1.5				
	21ME2504	Thermal Engineering Lab	1.5				
	21ME2505	Mechanics of Solids Lab	1.5				
	21ME2007	Design of Machine Elements	3				
	21ME2008	Machine Tools	3				
V	21ME2009	Thermal Power Systems	2				
•	21ME2506	CAD and Simulation Lab	1				
	21ME2507	Design Thinking and Product Innovation Lab	1.5				
	21ME2508	Machine Tools Lab	1.5				
	21ME2010	Computer Integrated Manufacturing	3				
	21ME2011	Design of Transmission Systems	3				
VI	21ME2012	Dynamics of Machinery	3				
	21ME2013	Heat Transfer	2				
	21ME2509	Computer Aided Manufacturing Lab	1.5				
	21ME2510	Heat Transfer Lab	1				
	21ME2014	Metrology and Measurements	3				
VII	21ME2512	Metrology and Measurements Lab	1.5				
		TOTAL	54.5				

PROFESSIONAL ELECTIVES (PE)

SEMESTER	SUBJECT	Course Code	CREDITS
V Sem	Professional Elective I	21ME4001-06	3
VI Sem	Professional Elective II	21ME4007-12	3
VII Sem	Professional Elective III	21ME4013-18	3
	Professional Elective IV	21ME4019-24	3
	Professional Elective V	21ME4025-30	3
	TOTAL		15

OPEN ELECTIVES (OE)

SEMESTER	SUBJECT	CREDITS
IVSem	Open Elective I	3
V Sem	Open Elective II	3
VI Sem	Open Elective III	3
VIISem	Open Elective IV	3
	TOTAL	12

SEMESTER	SUBJECT		CREDITS
	Career Competency Development I	21CD6001	1
III Sem	Value Added Course/Certificate Course I	21CC6001	1
	Industry Oriented Course I	21IC6001	1
IV Sem	Career Competency Development II	21CD6002	1
	Career Competency Development III	21CD6003	1
V Sem	Value Added Course/Certificate Course II	21CC6002	1
	Industry Oriented Course II	21IC6002	1
VI Sem	Career Competency Development IV	21CD6004	1
VII Sem	Career Competency Development V	21CD6005	1
	Skill Development Training	21CC6501	1
	TOTAL		10

SKILL ORIENTED COURSE (SC)

PROJECT (PR)

SEMESTER	SUBJECT	Course Code	CREDITS
V Sem	Internship I/on job training/Com Ser Project	21ME7501	1.5
VII Sem	Internship II/on job training/Com Ser Project	21ME7502	1.5
VIII Sem	Project work, seminar and internship	21ME7503	12
	TOTAL		15

CREDITS PER SEMESTER

S NO	САТ	CREDITS PER SEMESTER							CREDITS	
5. NU	CAI	Ι	II	III	IV	V	VI	VII	VIII	CREDITS
1	HS	3.5	1	3				2		9.5
2	BS	8.5	8.5	3						20
3	ES	7.5	10	8.5				1		27
4	PC			8	16.5	12	13.5	4.5		54.5
5	PE					3	3	9		15
6	OE				3	3	3	3		12
7	SC			2	2	2	2	2		10
8	PR					1.5		1.5	12	15
	MC		No Credits							
	TOTAL	19.5	19.5	24.5	21.5	21.5	21.5	23	12	163

		Con	ntac	t Per	riods		Scheme of Examination		
Category	Course Title		L T P		Total	Credits	Int. Marks	Ext. Marks	Total Marks
BS	Probability, Statistics and Numericalmethods	3	0	0	3	3	40	60	100
ES	Engineering Mechanics	3	1	0	4	4	40	60	100
ES	Thermodynamics	3	0	0	3	3	40	60	100
HS	Universal Human Values	3	0	0	3	3	40	60	100
PC	Fluid Mechanics and Hydraulic Machines	3	0	0	3	3	40	60	100
PC	Manufacturing Processes	2	0	0	2	2	40	60	100
ES	Computer Aided Drafting and Modeling Lab	0	0	3	3	1.5	40	60	100
PC	Fluid Mechanics and Hydraulic Machines Lab	0	0	3	3	1.5	40	60	100
PC	Manufacturing Processes Lab	0	0	3	3	1.5	40	60	100
SC	Career competency Development I	0	0	2	2	1	40	60	100
SC	Value added course/Certificate course I	0	0	0	0	1	40	60	100
	Counseling/Mentoring	0	0	1	1	0			
	Sports/Hobby Clubs/Activities	0	0	2	2	0			
	Activity Point Programme	During the Semest				er	20 Poir	nts	<u> </u>
	Total	17	1	14	32	24.5	440	660	1100

SEMESTER III

		NARAYA	ANA EN	GINEERING CO	DLLEGE:	GUDUR			
21ES1008		E	NGINE	ERING MECHA	NICS			R2021	
Semester	Hou	rs / Week		Total hrs Credit			Max		
							Marks		
	L	Т	Р		С	CIE	SEE	TOTAL	
III	2	1	0	48	3	40	60	100	
			С	OURSE CONTE	NT				
N	IODULE	-1		System of F	orces	1	0 H		
Composition and	resolution	n of force	s, paralle	logram law, princi	ple of trans	missibili	ty, types of f	orce systems	
- concurrent and	concurrer	t coplana	r forces,	resultant of copla	nar force s	ystems c	ouple, mome	nt of a force	
Varignon's theore	em, conce	pt of free	body diag	grams, concept of	equilibriur	n of copla	anar force sys	stems.	
MOD	ULE -2			Friction		0	9 H		
Definition of Frie	ction and i	ts applica	tions, and	gle of friction, and	le of repos	e. coeffic	ient of frictio	n. Types of	
Friction, laws of	static frict	ion. Desc	ription ar	nd application of f	riction on b	olocks on	horizontal a	nd inclined	
planes.		- ,	I						
				1 • 675					
MOD	ULE-3		A	nalysis of Trusse	S	05)H		
Introduction to p coefficient metho	lane trusso od.	es, analys	is of plan	e trusses by metho	d of Joints	, method	of sections &	t tension	
MOD	ULE-4		(Centroid & Moment of Inertia			10H		
Definition of Cen	ntroid & C	Centre of C	Gravity, A	Axes of Symmetry	, Location	of Centr	oid of Rectar	ngle, Triangle,	
Semicircle, Quad	lrant and	sector of	a circle	by method of int	egration. N	lumerical	problems of	n Centroid of	
Composite section	ns.								
Concept of Mom	ent of ine	rtia, perp	endicular	axis theorem, par	allel axis t	heorem, a	and moment	of inertia of	
Rectangular, Cire	cular, Sei	nicirculai	r, Quadra	ant of a circle T	riangular s	ections b	by method o	f integration.	
Numerical Proble	ems on mo	oment of	inertia of	composite section	1.				
]	MODUL	E-5		Kinematics & Ki	netics		10 H		
Rectilinear and C	Curvilinea	r motion,	Velocity	, Acceleration, Mo	otion of a p	rojectile,	Relative mot	tion.	
Kinetics of rectili	near moti	on, Newto	on's laws	of motion, D'Ale	mbert's prin	nciple, W	ork-energy n	nethod,	
Impulse-moment	um equati	on, Kinet	ics of circ	cular motion, Rota	ation.				
								40 1	
							Total hou	rs: 48 h	

1. S S.Bhavikatti, "Engineering Mechanics", 4th edition, New Age International, 2008.

2. R.K. Bansal, "A text book of Engineering Mechanics", LaxmiPublications, 2010

3. Irving Shames, GKM Rao, "Engineering Mechanics: Statics and Dynamics", 4thedition, Pearson, 2009.

Reference Book(s):

- 1. BasudebBhattacharya., "EngineeringMechanics", 2ndedition, OxfordUniversityPress (India), 2015.
- 2. K L Kumar, Veenu Kumar, "Engineering Mechanics", 4th edition, Tata McGrawHill,2010.
- 3. Engineering Mechanics, R.S.Khurmi, S.Chand, 2012.
- 4. Engineering Mechanics Statics and Dynamics by Ferdinand Singer, 2011

NARAYANA ENGINEERING COLLEGE: GUDUR										
21ES1011 THERMODYNAMICS								R2021		
Semester	Hours / Week Total Credits Max Marks						5			
	L	Т	Р	hrs	С	CIE	SEE	TOTAL		
III	3	0	0	48	3	40	60	100		

COURSE CONTENT MODULE – 1 FUNDAMENTAL CONCEPTS 09 Hours Fundamental Concepts and Definitions: Microscopic and Macroscopic approaches, Concept of continuum and control volume, Systems of Thermodynamics, State, Property, Process, Homogeneous and Heterogeneous systems. Thermodynamic equilibrium, Quasi - static Process, Zeroth Law of Thermodynamics, Temperature Measurement . Work And Heat Transfer: Thermodynamic Definition of Work and Heat, Different forms of Work and Work transfer and Heat and Heat Transfer, Path Function and Point Function. MODULE -2 FIRST LAW OF THERMODYNAMICS 10 Hours First Law of Thermodynamics: First law applied to a closed system undergoing a cyclic process and a change of state, Concept of Energy and its forms – Internal Energy and Enthalpy, Perpetual Motion Machine of First Kind (PMM1), First Law Limitations. Systems of flow : First law applied to a control volume, Steady flow process and its mass and energy balance, Steady flow energy equation on unit mass and time basis, Application of SFEE for devices like boiler, turbine, compressor, heat exchanger, nozzle, diffuser and throttling device. MODULE-3 SECOND LAW OF THERMODYNAMICS 10Hours Second Law of Thermodynamics: Definition of a heat engine and energy reservoir, thermal efficiency of heat engine, Refrigerator and heat pump and their coefficient of performances, Kelvin-Planck and Clausius Statements of the Second Law and their equivalence, Carnot Cycle and Reversible Heat Engine, Carnot theorems and corollaries. Absolute Thermodynamic Temperature Scale, PMMI and PMM II, Reversible process, Irreversible process, Causes of Irreversibility, Entropy : Concept of Entropy, Clausius theorem, Clausius inequality, Entropy changes in an irreversible and reversible process, Principle of increase of entropy with its application, Absolute entropy. **MODULE-4** PURE SUBSTANCES 09 Hours PURE SUBSTANCE: Behavior of pure substance (steam) explained through T-v, P-T, P-v, P-h & T-s diagrams Triple point and critical point, Quality or Dryness Fraction, Wetness Fraction, Steam Tables, Mollier Chart Measurement of dryness fraction using throttling and separating- throttling calorimeters and also from steam tables Steam processes; expressions for the change in internal energy, enthalpy, work, heat, entropy in various Processes. MODULE – 5 IDEAL GASES AND GAS POWER CYCLES 10 Hours

Ideal Gas and Real Gas: Ideal gas, relation among the specific heats, internal energy, enthalpy. Analysis of isochoric, isobaric, isothermal, isentropic, isenthalpic processes, representation of the above processes on P-v, T-s planes. Determination of work, heat, entropy and enthalpy changes during the above processes, problems Characteristic gas equations of a real gas, law of corresponding states, compressibility factor, problems.

MODELLING OF BASIC ENERGY CONVERSION CYCLES:

Air standard cycle assumptions, Overview of reciprocating engines, Air standard cycles for reciprocating engines – Otto, Diesel &dual, Derivation for efficiency and Mean effective pressure (MEP) and Problems.

Total hours:	48 hours	

- 1. P.K.Nag, Engineering Thermodynamics, TMH, New Delhi, 2013
- 2. G.J.Vanwylen and R.E.Sonntag, Fundamentals of Classical Thermodynamics, Wiley Eastern, NewDelhi, 2008.
- **3.** Yonus A Cengel and Michael A Boles, Thermodynamics: An Engineering Approach, McGraw Hill, 2002.
- **4.** Principles of engineering thermodynamics by morani 8THedition, SI version.

Reference Book(s):

- 1. Thermal engineering by R.K Rajput 6^{th} edition.
- **2.** R. K. Rajput (2010), A text book of Engineering Thermodynamics, Fourth Edition, Laxmi Publications, New Delhi, India.
- 3. Engineering thermodynamics by RK Rajput,5TH edition, Laxmi Publications, New Delhi, India.
- **4.** Engineering thermodynamics, work and heat transfer by Gordon rogers 4TH edition, person educationindia2002.

			NARA	YANAE	NGINEERIN	G COLLE	GE::GUDUR		
21ME2002			MA	NUFACTI	URING PRO	CESSES		R2021	
Semester	Н	ours / Wee	k	Total	Credits	Ma	x Marks		
	L	Т	Р	hrs	C	CIE	SEE	TOTAL	
III	3	0	0	48	3	40	60	100	
			<u>I</u>	COURSE	CONTENT				
MODU	LE – 1	(CASTING	PROCES	SES			10 h	
Introduction Casting Prod Sands and Te design of gat Solidification MODUI Special castin investment ca RISERS – Ty runner, gate a METHODS MODU WELDING design of we water) weldi	ntroduction: Importance and selection of manufacturing processes. Casting Processes: Introduction to casting process, process steps; Sand Casting – Sand Molds - Types of Molding ands and Testing; pattern: types, materials and allowance; Cores: Types of cores, core prints, principles and lesign of gating system; Solidification of casting: Concept, solidification of pure metal and alloy. MODULE -2 SPECIAL CASTING PROCESSES 9h Special casting processes: Process Mechanics, characteristics, parameters and applications of Shellcasting, nvestment casting, die casting, centrifugal casting; 9h RISERS – Types, function and design, casting design considerations, Design of feeding systems i.e., sprue, unner, gate and riser, moulding flasks ; casting defects and remedies 10h MODULE-3 METAL JOINING PROCESSES - WELDING 10h WELDING : Classification of welding processes ;types of welds and welded joints and V-I characteristics, lesign of welded joints, ARC welding, Forge welding, resistance welding, Thermit welding and Plasma (Air and vater) welding submerged arc welding, Laser welding, applications, advantages and disadvantages of the above								
processes, of Heat affected MODI	her fabricat l zones in w	ion process elding; Ar	ses. c Welding o GAS WE	defects: ca	uses and rem	edies.		10h	
Cas Wolding	r = Flom (Thoractoria	tion Equipr	pont fluxo	and fillor r	ode Ultree	onia Walding	Friction	
Welding-Res Brazing:- Fil ;TIG& MIG CUTTING	istance Spo ler Metals, welding OF META	Methods - LS: Oxy -	Resistance Soldering:- - Acetylen	e Gas cutt	elding – Stud es, Types of ing, water pl	Welding - Solders an asma. Cut	- PercussionW d Fluxes tting of ferrou	/elding - is, non-ferrous metals	
soldering and remedies-des	d brazing a structive and	Ind adhesiv	ve bonding uctive testir	: Types ng of weld	and their ap s	plications	, gas welding	g defects-causes and	
MODI	ULE-5		SURF	ACE ENG POWDI	GINEERING ERMETALI	: & LURGY		9 h	
SURFACE I (a) Overlay c Classification sintering; Sec Powder Met Text Book(s)	ENGINEE oatings (b) o of ceramic condary pro allurgy: Pr allurgy: Pr : P.N. " Many	KING: Sur Diffusion (materials, cessing of inciple, ma	tace treatm coatings (c) ceramic po ceramics: (inufacture c	ent proces) Thermal owder prep Coatings, f of powders	ses and their or mechanica paration; Proo finishing. s, steps involv	characteria al modifica cessing of /ed.	stics and applation of surfactories ceramic parts Total hours	Acations. Sees. Ceramics : Pressing, casting, 48 hours	
1.Rao2.KalpPears	P.N.," Man ak Jains and son,2018	d SchmidS	R.,"Manuf	-volume	T [°] , 5thedition	n, McGrav	v-Hill Educati	on, 2018. on,	

- 3. Production Technology by R.K. Jain and S.C. Gupta, Khanna Publishers, 17th edition, 2012
- 4. Ian Gibson, Davin Rosen, Brent Stucker "Additive Manufacturing Technologies, Springer, 2ndEd, 2014.
- 5. Welding and Welding Technology, Richard Little McGraw Hill Education, 2017
- 6. Manufacturing Science by Amitabh Ghosh ,east-west press pvt. Ltd. Second Edition

Reference Book(s):

- 1. Manufacturing Technology, R.K. Rajput, Laxmi Publications
- 2. Production Technology by R.K.Jainand S.C.Gupta, KhannaPublishers, 17 th qedition, 2012
- 3. Production Technology, K.L Narayana, I.K. International Pub, 3rdEdition, 2013
- 4. Manufacturing Process Vol. I, H.S.ShahPearson, 2013,
- 5. Principles of Metal Castings, Rosenthal, Tata Mc Graw Hill ,2ndEdition,2001
- 6. Workshop Technology-B.S.RaghuVamshi-Vol I.

NARAYANA ENGINEERING COLLEGE:GUDUR											
21ME2001		Fluid Mechanics and Hydraulic Machines R2021									
Semester		Hrs / W	/eek	Total	Credits		Max Mar	:ks			
	L	L T P hrs C CIE SEE									
III	3	0	0	48	3	40	60	100			

COURSE CONTENT MODULE – 1 PROPERTIES OF FLUIDS 10 Hrs Definition of fluid, Dimensions and units, physical properties of fluids–density. specific weight, specific gravity, surface tension– vapor pressure and their influence on fluid motion–Newton's Law Of Viscosity, Elwid Statics Atmospheric Course and Viscourse measurement of graverse Discourse tension

Fluid Statics-Atmospheric, Gauge and Vacuum pressure–measurement of pressure–Piezometer, manometerssimple, U-tube manometers, U-tube differential manometers.

Fluid Kinematics : stream line, path line and streak lines and steam tube, classification of flows- steady & unsteady, uniform, non-uniform, laminar, turbulent, rotational and irrotational flows-equation of continuity for one dimensional flow.

MODULE -2	FLUID DYNAMICS	9 Hrs

Fluid Dynamics: surface and body forces – Euler's and Bernoulli's equations for flowing stream line, momentum equation and its application on force on pipe bend

Flow Through Pipes: Reynolds's Number, Darcy Weisbach equation–Minor losses in pipes–pipes in series and pipes in parallel. Measurement of flow: Pitot Tube, Venturi Meter - horizontal position only and Orifice Meter.

MODULE-3	IMPACT OF JET ON VANES	10 Hrs

Dimensional Analysis- dimensional homogeneity- methods of dimensional analysis-Rayleigh's method-Buckingham theorem.

Impact Of Jet : Introduction to Hydrodynamic Thrust of jet on fixed and moving surfaces (flat and curved), series of flat vanes and series of radial curved vanes -velocity diagrams, work done and efficiency

MODULE-4	HYDRAULIC TURBINES	10 Hrs
Classification of turbines, Impulse a working proportions, work done, effi- and efficiency.	nd Reaction turbines, Pelton wheel, Fra ciencies(theory & derivations), hydraul	ncis turbine and Kaplan turbine- ic design-draft tube-theory- functions
MODULE-5	CENTRIFUGAL PUMPS	9 Hrs
Introduction, Classification -component efficiencies-specific speed-pumps i	nts and working of centrifugal pumps, - w n series and parallel-performance chara	vork done – manometric head, losses, acteristic curves and NPSH.
	Total Hrs: 48 Hrs	

1. Hydraulic and Fluid Mechanics including Hydraulic Machines by Modi &Seth, Standard book house

2. A Text of Fluid Mechanics and Hydraulic Machines by Dr.R.K.Bansal – Laxmi Publications (P) Ltd., NewDelhi,2019.

3.Dr D S Kumar, "Fluid Mechanics and Fluid Power Engineering" S K Katariua&Sons,2014.

Reference Book(s):

1. Fluid mechanics and fluid machines by Rajput, S.Chand & Co.

2. Mechanics of Fluids by Potter, Wiggert, Ramadan, M.M.M.SARCAR, Cengage Publishers.

3. Principles of Fluid Mechanics and Fluid Machines by M.Narayana Pillai, Universities Press.

NARAYANA ENGINEERING COLLEGE:GUDUR											
21ES1515	21ES1515 COMPUTER AIDED DRAFTING AND R2021 MODELLING LAB										
Semester	H	Iours / Wee	k	Total	Credit		Max Mar	ks			
L T P hrs C CIE SEE											
III	0	III 0 0 3 48 1.5 40 60									

COURSE CONTENT

 Task -1 Introduction to AutoCAD commands

Study capabilities of software for Drafting and Modeling – Coordinate systems (absolute, relative, polar, etc.) – Creation of simple figures like polygon and general multi-line figures.

Task -2

. Draw Title Block with necessary text and projection symbol

Task -3

Draw the methods of Dimensioning

TASK-4

Draw front view and top view of pentagon & hexagon by using 2D modeling

TASK-5

Draw front view and top view of simple solids like prism, pyramid, cylinder, cone by using 2D modeling

TASK-6

Draw front view, top view and side view of objects from the given pictorial views (eg. V-block,, steppedblock, pulley, Simple stool,).

TASK-7

Draw sectional views of prism, pyramid, , etc,

TASK-8

Draw isometric projection of simple objects. cylinder, cone and sphere

TASK-9

Creation of 3-D models of simple objects like journal bearing and spiral steps

TASK-10

Draw a layout of Engineering workshop.

1. Ibrahim Zeid, "CAD / CAM - Theory and Practice 2E", Tata Mcgraw-Hill, NewDelhi,2010.

2. P. Radhakrishnan, S. Subramanyan, V. Raju "CAD/CAM/CIM", New Age International, 2015.

3. M.M.M. Sarcar, K. Mallikarjuna Rao, K. Lalit Narayan "computer aided design and manufacturing", prentice hall of India,2008.

Reference Book(s):

- 1. Mikell.P.Groover, "CAD/CAM: Computer-Aided Design and Manufacturing", Prenticehall of India Pvt. Ltd.,NewDelhi.2008
- 2. Chriss McMahon and Jimmie Browne, "CAD/CAM", Addision Wesley, New York, 2000.
- 3. Tien-chienchang, Richard A wysk, Hsu-pin wang, "Computer-Aided Manufacturing", PearsonEdition,2009.

NARAYANA ENGINEERING COLLEGE::NELLORE											
21ME2502	1ME2502Manufacturing process LabR2021										
Semester	H	Iours / Wee	k	Credit	Max						
	L	Т	Р	hrs	С	CIE	SEE	TOTAL			
III	III 0 0 3 48 1.5 40 60										

COURSE CONTENT

Task 1

Pattern Design and making on lathe machine

Task 2

Sand Properties Testing – Exercise for Strength and Permeability

Task -3

Gating Design and pouring time and solidification time calculations

TASK -4

Molding, Melting and Casting for ferrous/ non ferrous materials

TASK -5

Arc Welding: Lap & Butt Joint of M.S. plates -5mm

TASK-6

Brazing on copper pipes- 6mm pipe

TASK -7

Spot Welding on M.S PLATE- 2mm size

TASK -8

Tig Welding : Lap & Butt Joint of M.S. plates -5mm

TASK -9

Hydraulic Press: Deep drawing Press Tool: Blanking and Piercing operation with Simple dies

TASK -10

Additive manufacturing-3D printing

ADDITIONAL EXPERIMENTS

TASK-11

Design the mould for making chalk pieces

TASK-12

Design the small components by using 3D Printing

Text Book(s):

- 1 .W. A. J. Chapman, Workshop Technology Part I, ELBS & Edward Arnold Publishers.
- 2 A charkan. N., Machine Tool Design Vol. 1 to 4, MIR Publication.
- 3 HMT, Production Technology, Tata McGraw Hill.

Reference Book(s):

1 .Hajra Choudary, Elements of workshop technology, Vol I & II, Media Publishers,

2 .Malkin Stephen, Grinding Technology: Theory and Applications of Machining with Abrasives, Industrial press, 2008

3 .PoulDeGarmo, J.T.Black, R.A.Kosher, Materials and Processes in Manufacturing, Prentice Hall of India Pvt.Ltd., 1997.

NARAYANA ENGINEERING COLLEGE:GUDUR									
21ME2501	ME2501 Fluid Mechanics and Hydraulic Machines Lab R2021								
Semester	Ho	urs / Week		Total	Credits	Ν	lax Marl	ks	
	L	TOTAL							
III	0	0	3	48	1.5	40	60	100	

COURSE CONTENT
Task 1 – Calibration of Venturi Meter
Calibrate the coefficient of Discharge of a Venturi Meter.
Task -2 Calibration of Orifice Meter
Calibrate the coefficient of Discharge of an Orifice Meter.
TASK-3 External Mouth Piece
Calibrate the coefficient of Discharge of external mouth piece.
TASK-4 Rectangular Notch
Calibrate the coefficient of Discharge of Rectangular Notch.
TASK-5 Minor Losses
Find the loss of head due to sudden contraction.
TASK-6 Major Losses
Find the friction factor of pipes having different diameters and same material.
TASK-7 Verification of Bernoulli's Theorem.
Prove that the total energy remains constant by using Bernoulli's tube with different
cross section.
TASK -8 Impact of jet on vanes
Measure the co efficient of impact of jet on flat and curved vanes.
TASK-9 Pelton wheel turbine
Conduct performance test on Pelton Wheel and find it's efficiency.
TASK-10 Single stage centrifugal pump.
Calculate the efficiency of a single stage centrifugal pump with constant speed.
ADDITIONAL EXPERIMENTS
TASK-11 Multi stage centrifugal pump.
Calculate the efficiency of a Multi stage centrifugal pump with constant speed.
TASK-12 Reciprocating pump.

Calculate the efficiency of a Reciprocating pump with constant speed.

VirtualLabs:

1<u>http://eerc03-iiith.vlabs.ac.in/</u> 2.<u>http://fmc-nitk.vlabs.ac.in/fluid-machinery/</u>

Text Book(s):

1. Hydraulic and Fluid Mechanics including Hydraulic Machines by Modi &Seth, Standard book house

A Text of Fluid Mechanics and Hydraulic Machines by Dr.R.K.Bansal – Laxmi Publications (P) Ltd., New Delhi.

Reference Book(s):

1. Fluid mechanics and fluid machines by Rajput, S.Chand & Co.

2. Mechanics of Fluids by Potter, Wiggert, Ramadan, M.M.M.SARCAR, Cengage Publishers.

3. Principles of Fluid Mechanics and Fluid Machines by M.Narayana Pillai, Universities Press.

SEMESTER IV

		Co	ntac	t Per	iods		Scheme of Examination		
	Course Title		wee	ek			Max.Marks		
Category						Credits	Int.	Ext.	Total
		L	Т	Р	Total		Marks	Marks	Marks
PC	Kinematics of Machinery	3	0	0	3	3	40	60	100
PC	Mechanics of Solids	3	0	0	3	3	40	60	100
PC	Metal Forming Processes	3	0	0	3	3	40	60	100
PC	Thermal Engineering	3	0	0	3	3	40	60	100
OE	Open Elective I	3	0	0	3	3	40	60	100
PC	Computer Aided Machine Drawing	0	0	3	3	1.5	40	60	100
PC	Thermal Engineering Lab	0	0	3	3	1.5	40	60	100
PC	Mechanics of Solids Lab	0	0	3	3	1.5	40	60	100
SC	Career competency Development II	0	0	2	2	1	40	60	100
SC	Industry oriented Course I	0	0	0	0	1	100		100
MC	Mandatory course III	2	0	0	2	0			
	Counselling/Mentoring	0	0	1	1	0			
	Sports/Hobby Clubs/Activities	0	0	2	2	0			
	Activity Point Programme	Du	ring	the S	Semest	er	20 Points		
	Total	18	0	14	32	21.5	460	540	1000

			NARAY	ANA ENG	GINEERIN	NG COLL	LEGE:GUD	UR
21ME2003	KINEMATICS OF MACHINERY R2021							R2021
Semester		Hours /	Week	Total	Credits		Max	Marks
	L	Т	Р	hrs	C	CIE	SEE	TOTAL
IV	3	0	0	48	3	40	60	100
				COURSE	CONTEN	N I		
MODULE – 1 Introduction							10 Hrs	
Definitions of	of link o	r elemen	t, kinema	atic pairs,	degrees of	of freedor	n, Grubler'	s criterion (without
derivation),	kinematic	c chain,	mechanis	m, struct	ure, mobil	lity of m	nechanism,	inversion, machine,
kinematic cha	ains and i	nversions	. Inversio	ns of four	bar chain,	single slic	ler crank cha	ain and double slider
crank chain, (Quick retu	irn motio	n mechani	isms – drag	g link mech	nanism.		
MOD	ULE -2		Mechanis	sms with I	.owerPair	Ś		9 Hrs
straight line r mechanisms - Steering Mec Hooke's Join	notion me – Geneva hanism: (t.	echanisms mechanis Condition	s – Peauco m and rate for perfe	ellier'smec chetand pa ect steering	hanism an wl mechan , Steering	d Robert's nism, panto gear mecl	s mechanism ograph. hanisms, Da	, intermittent motion vis and Ackermann–
MODI	ILE-3	Veloc	ity and A	cceleratio	on of Mecl	nanisms		10 Hrs
Determinatio	n of velo	city and	accelerat	ion of a p	oint/link i	n simple	mechanisms	by relative velocity
method (grap	hical) – (Coriolis c	omponent	t of accele	ration. Inst	tantaneous	s centre – C	entrodes – Kennedy's
theorem – 7	o detern	nine line	ar veloci	ty and an	igular velo	ocity of 1	inks of sir	nple mechanisms by
instantaneous	center m	ethod.						
Klein's Cons	truction fo	or velocity	y and acce	eleration of	slider crai	nk mechan	ism.	
MODU	JLE-4		Gea	urs & Gea	r Trains			10 Hrs
Classification	of Gear	s – Gear	terminol	ogy –Law	of gearing	g –Velocit	y of sliding	g – Length of path o
contact, Arc o	of contact	-Contact	ratio – Int	terference i	n Involute	gears, Me	thods of avo	iding interference
– Minimum	number o	f teeth to	avoid in	terference	on pinion	meshing	with gear ar	nd on pinion meshing
with rack. C Numerical pr	haracteris oblems.	stics of i	nvolutes	action, Co	omparison	of Involu	ite and Cyc	cloidal teeth profiles.
Velocity ratio	& Train	value, Ty	pes of ge	ar trains–	Simple, Co	ompound,	Reverted &	Epicyclic gear trains.
Algebraic/Tabular method of finding Train value of Epicyclic gear trains, Bevel gear Differential of an automobile								
MOD	ULE-5			CA	MS			9 Hrs
Types of cams, types of followers, displacement, velocity and acceleration time curves for cam profiles, disc cam with reciprocating follower having knife-edge, roller and flat faced follower, disc cam with oscillating roller follower. Follower motions including, SHM, uniform velocity, uniform acceleration and retardation and Cycloidal motion								
							1 otal nours	5: 48 nours

- 1. Thomas Bevan, Theory of Machines, CBS Publishers, 2009.
- 2. S.S. Rattan, Theory of Machines, Tata McGraw Hill Publishers, 3rd Edition,2009.
- 3. Kinematics & Theory of Machines, Sadhu Singh, Pearson

Reference Book(s):

 J.E.Shigley, Theory of Machines, Tata McGraw Hill Publishers, New Delhi, 3rd Edition, 2005.
 C.S. Sharma and Kamlesh Purohit, Theory of Mechanisms and Machines, PHI Learning Pvt. Limited,2006

3. Amitabh Ghosh and A.K. Mallik, Theory of Machines, East West Publications, 3rd Edition, 2009.

NARAYANA ENGINEERING COLLEGE:GUDUR								
21ME2004		MECHANICS OF SOLIDS R2021						
	Hours / Week Total Credits Max						Marks	
Semester	L	Т	Р	hrs	L	Т	Р	
IV	2	1	0	48	3	40	60	100

	COURSE CONTENT	
MODULE – 1	SIMPLE STRESSES AND STRAINS	08 hours
Types of Stresses, St	rains, Hooke's law, Stress-Strain diagram for various materials, Wo	rking Stress, Factor of
safety, Lateral strain	, Poisson's ratio, Volumetric strain, relation between three elastic mo	odule, Bars of Varying
section, Composite b	ars, Temperature stresses, Strain energy.	
MODULE -2	SHEAR FORCE AND BENDING MOMENT	10 hours
Concept of shear for	prce and bending moment, S.F and B.M. diagrams for cantilever, Sin	mply supported, Over
hanging beams su	bjected to Point loads, Uniformly distributed loads, Uniformly	varying loads and
combination of these	e loads, Point of contra flexure.	
MODULE-3	BENDING STRESS AND SHEAR STRESS	10 hours
Theory of simple be	ending, Bending equation, Determination of flexural stresses for simp	ble cases, Section
modulus.		
Shear stress formul	a, Shear stress distribution across various beams & sections - Recta	ngular, Circular,
Triangular, I, T sect	ions	-
MODULE-4	TORSION AND DEFLECTION OF BEAMS	10 hours
Theory of pure torsi	on, Torsion Equation, transmission of power in solid and hollow circul	ar shafts, comparison
o strengths of solid a	and hollow shafts, shafts in series and parallel, combined bending and t	orsion.
Relationship betwee	en curvature, slope and deflection, Slope and deflection of cantilever	and simply
supported beams by	Double Integration method and Macaulay's method.	
MODULE-5	PRESSURE VESSELS AND COMPLEX STRESSES	10 hours
Thin seamless cylin	drical shells, Derivation of formula for longitudinal and circumferent	ial stresses,
Volumetric strain, 7	Thin spherical shells, Thick cylinders under internal and external press	sure.
Complex Stresses -	Stresses on an inclined plane under different uniaxial and biaxial stress	conditions –
Principal planes and	I principal stresses - Monr's circle	mar 18 hours
		115. 40 Hours
	Toxt Book(s):	
1. F.P. Beer. E.R. Jo	hnston, Jr&John.T. DeWolf, "Mechanics of Materials". 7th edition. The	ata
McGraw-Hill,2016.	···· ,· ······························	
2. SS Rattan, Streng	th of materials, 3rd edition, Tata McGraw-Hill,2016.	
2 Strongeth of Motor	-1, $1 - D K D = -1$, 1 , $D = -1$, 1 , $5/1, 2012$	

3. Strength of Materials by R.K. Bansal, Laxmi Publishers, 5thEdition,2012.

4. Mechanics of Materials, Andrews Pytel, J aan Kiusallaas & M.M.M.Sarcar (Second Edition), Cengage LearningPublishers.

Reference Book(s):

1. Timoshenko, "Strength of Materials Part-I&II", 3rd edition, CBS Publishers, 2004.

2. Popov, "Mechanics of Solids", 2nd edition, New Pearson Education, 2015

3. R.K.Rajput, *Strength of materials*, S.Chand Publications, Revised Edition, 2006.

4. Strength of Materials by M.Chakraborti, S.K.Kataria &Sons, 2ndEdition,2011.

NARAYANA ENGINEERING COLLEGE:GUDUR								
21ME2005	METAL FORMING PROCESSES						R2021	
Semester	Hours / Week Total Credits Max hrs Marks							
	L	Т	Р		C	CIE	SEE	TOTAL
IV	3 0 0 48 3 40 60						100	

	COURSE CONTENT						
MODULE – 1	INTRODUCTION TO METAL FORMING	10 Hrs					
Stress, strain, Two-dimensiona engineering stress and true str locus, theory of plasticity, Hot	al stress analysis, and three-dimensional stress analysis, the relation less, the relation between engineering strain and true strain, yield constrained working, cold working, strain hardening, recovery, recrystallization.	between iteria, yield and grainGrowth					
MODULE -2	ROLLING & FORGING	9Hrs					
Introduction to bulk and sheet a ROLLING: principles and t requirements, applications and PROCESSES: Principles of for – Roll forging –: Rotary forg applications	metal forming, Economics of bulk-forming heory of rolling, Process description of Rolling. Forces in ro , limitations, defects in rolled products – Numerical problems on Ro rging – Process description of Forging -Types Forging – Smith forg ging – forging defects, Forces in forging of the strip,disc and po	olling and power olling. FORGING ing, Drop Forging wer requirements.					
MODULE-3	EXTRUSION PROCESSES	10Hrs					
EXTRUSION PROCESSES: I	Basic extrusion process and its characteristics. Mechanics of hot and	cold extrusion -					
Forward extrusion and backward extrusion - Impact extrusion Hydrostatic extrusion, forces in extrusion of							
cylindrical and non-cylindrical	components – characteristics and defects in extruded parts.						
WIRE DRAWING: Process 1	Mechanics and its characteristics, determination of the degree	of drawing,					
Drawing force, power, and nur	nber of stages-defects in products, Numerical problems on drawing						
MODULE-4	WIRE DRAWING & SHEET METAL WORKIN	G 9Hrs					
Sheet Metal Working - Eco	onomical Considerations - Stamping, forming, and other cold w	orking processes:					
Blanking and piercing – Bendi	ng and forming - Drawing and its types - Cup drawing and Tube dr	awing – coining –					
Hot and cold spinning. Force and power requirements in sheet metal operations, defects in sheet metal products							
MODULE-5	PROCESSING OF PLASTICS	10Hrs					
Processing of plastics, injection	n and blow molding, calendaring, thermos forming, compression mol	ding,transfer					
molding, and joining of plastic	8.						
Rapid manufacturing: - Introduction - concepts of rapid manufacturing, information flow forrapid							
prototyping, classification of the rapid prototyping process, stereolithographic process, fused							
deposition modeling, selective laser sintering							
	Total hours	s: 48 hours					

- 1. Manufacturing Technology, Schmid and kalpak Jain, Pearson Education, 2016
- 2. Production Technology by R.K. Jain and S.C. Gupta, Khanna Publishers, 17th edition, 2012
- 3. Manufacturing technology Vol I by P.N. Rao, Tata McGraw Hill, 4th edition, 2013

Reference Book(s):

- 1. Manufacturing Technology, R.K. Rajput, Laxmi Pub
- 2. Rapid Prototyping Principles and Applications, Rafiq Noorani, WielyPub

NARAYANA ENGINEERING COLLEGE:GUDUR								
21ME2006	THERMAL ENGINEERING R2021							
Semester	Hours / Week Total Credits Max M					Marks		
	L	Т	Р	hrs	С	CIE	SEE	TOTAL
IV	3	0	0	48	3	40	60	100

COURSE CONTENT								
MODULE – 1 INTRODUCTION TO IC ENGINES 09 Hours								
IC ENGINES: Classification, Various parts and their uses, Materials of parts, Working principles of two stroke and four stroke engines and SI and CI engines, Valve and Port Timing Diagrams, Scavenging of IC Engines.								
MODULE -2	VARIOUS SYSTEMS OF IC ENGINES	10 Hours						
 FUEL SUPPLY SYSTEM (IN SI ENGINES) : Line diagram of fuel supply, Fuel pumps – Mechanical and Electrical, Air cleaners, Fuel filters, Simple Carburettor – its working principle and types, Carburettor defects. COOLING SYSTEM (IN SI ENGINES) : Methods – Air cooling, water cooling and liquid cooling, Types of water cooling – Thermosyphon system and Pump Circulation system, Radiator and Thermostat. Pressure sealed cooling, Anti freeze solutions. LUBRICATION SYSTEM (IN SI ENGINES) : Dry sump and Wet sump systems. Crankcase ventilation, Oil pumps – Gear pump and Plunger pump, Oil filters – Bypass system and Full flow system. IGNITION SYSTEM (IN SI ENGINES) : Requirements of ignition system, Types – Battery Ignition, Magneta Institute and Electronic Magneta Institute and Full flow system. 								
Retard Mechanisms. MODULE -3	COMBUSTION IN IC ENGINES	10 Hours						
combustion, Importance of ignition and knocking (exp chamber – requirements, typ COMBUSTION IN CI EN engine variables, Diesel Kn	 combustion, Importance of flame speed and effect of engine variables, Type of Abnormal combustion, pre- ignition and knocking (explanation of) Fuel requirements and fuel rating, anti-knock additives, combustion chamber – requirements, types. COMBUSTION IN CI ENGINES: Four stages of combustion, Delay period and its importance, Effect of engine variables, Diesel Knock, Need for air movement, open and divided combustion chambers and nozzles 							
MODULE-4	TESTING AND PERFORMANCE OF IC	09 Hours						
	ENGINES							
TESTING AND PERFORMANCE OF IC ENGINES : Parameters of performance, measurement or cylinder pressure, fuel consumption, air intake, exhaust gas composition, Brake power, Determination of frictional losses and indicated power, Performance test, Heat balance sheet.								
MODULE-5	COMPRESSORS	10 Hours						
RECIPROCATING COMPRESSORS : Classification of compressors, Principle of operation o reciprocating compressors, work required, Isothermal efficiency volumetric efficiency and effect of clearance multistage compression, under cooling, saving of work, minimum work condition for multi-stagecompression. CENTRIFUGAL COMPRESSORS : Mechanical details, principle of operation, velocity and pressure variation, impeller blade shape-losses, slip factor, power input factor, pressure coefficient and adiabatic coefficient, velocity diagrams, power required.								
Total hours: 48 Hours								

- 1. R.S. Khurmi and J.K. Gupta, A Textbook of Thermal Engineering, (2011), 3rd Edition, S. Chand & Company Ltd., New Delhi
- 2. R. K. Rajput (2011), Thermal Engineering, 18th edition, Lakshmi Publications, New Delhi, India.
- 3. Dr. Kirpal Singh, Automobile Engineering (Volume II), 6th Edition, Standard Publisher, New Delhi.
- 4. V. Ganesan (2011), I.C. Engines, 3rd edition, Tata McGraw-Hill, New Delhi, India.

Reference Book(s):

- 1. Mathur, Sharma (2008), IC Engines, 3rd edition, Dhanpat Rai & Sons, New Delhi, India.
- **2.** B.JohnHeywood (2011), internalcombustionenginefundamentals,2ndedition, TataMcGraw-Hill, NewDelhi.

3. Pulkrabek (2008), Engineering fundamentals of IC Engines, 2nd edition, Pearson Education.
NARAYANAENGINEERINGCOLLEGE:NELLORE										
21ME2503Computer Aided Machine Drawing LabR2021										
Semester	H	Iours /Weel	k	Total	Credit		MaxMarks			
	L	Т	Р	hrs	С	CIE	SEE	TOTAL		
IV	0	0 1 2 48 2 40 60 100								

COURSE CONTENT

PART -A The following contents are to be done by any 2D software package

Task 1

- 1. Conventional representation of materials.
- 2. Conventional representation of machine components.

Task 2 Conventional representation

- 1. Conventional representation of dimensioning on the drawings.
- 2. Conventional representation sectional views.

Task -3 Detachable joints

Drawing of thread profiles, hexagonal and square-headed bolts and nuts, bolted joint with washer and locknut, stud joint, screw joint and foundation bolts.

PART B

The following contents are to be done by any 2D software package

TASK -4 Riveted joints

Drawing of rivet, lap joint, butt joint with single strap, single riveted, double riveted double strap joints.,

TASK -5 Welded joints

Lap joint and T joint with fillet, butt joint with conventions

TASK-6 Keys & Couplings

Taper key, sunk taper key, round key, saddle key, feather key, woodruff key. Shaft coupling, bushed pintype flange coupling, universal coupling, Oldhams' coupling

PART-C

The following contents are to be done by any 3D software package:

TASK -7 Assembly drawings

Lathe tool post, , tail stock, machine vice, gate valve

TASK -8 Assembly drawings

screw jack, plumber block, clamping device, Geneva cam, universal coupling, connecting rod, eccentric.

Additional Experiments:

TASK -9 Manufacturing drawing

Representation of limits, fits and tolerances for mating parts. Use any four parts of above assembly drawings and prepare manufacturing drawing with dimensional and geometric tolerances.

1.K.L. Narayana, P. Kannaiah, "A text book on Engineering Drawing", SciTech Publications, 2014 2. N.D.Bhatt, "Machine Drawing", Charotar, 50th edition, 2014.

3"Software tools/packages", Auto CAD, Solid works or equalent.

4. Machine Drawing With AutoCAD, GoutamPohit, GoutamGhosh, Pearson Publications

Reference Book(s):

•

1. CecilJensen, JayHelsel and Donald D.Voisinet, "Computer Aided Engineering Drawing",

TataMcGraw-Hill, NY,2000.

- 2. James Barclay, Brain Griffiths, "Engineering Drawing for Manufacture", Kogan PageScience, 2003.
- 3. K.L. Narayana, "Production Drawing", NewAge International Publishers, 3rdedition,2014

4.P I Varghese and K C John, Machine Drawing, VIP Publishers, 2011

THERMAL ENGINEERING LAB R2021 Semester Hours / Week Total hrs Credits Max Marks I. T P C CIE SE TOTAL IV 0 0 3 48 1.5 40 60 100 COURSE CONTENT Task 1 Performance test on Spark Ignition engine and Compression Ignition using the alternate fuels. Task-2 Valve Timing Diagram of an 4 stroke diesel engine . Task-3 Port Timing Diagram of an 2-Stroke Petrol engine. TASK-4 Performance Test on a 4 -Stroke Diesel Engines. TASK-5 Performance Test on 2-Stroke Petrol engine. TASK-6 Evaluation of Engine friction by conducting Morse test on 4-Stroke Multi cylinderEngine. TASK-5 Performance Test on 4 - stroke engine. TASK-7 Restructure of an I.C. Engine. TASK-8 Heat Balance of an I.C. Engine. TASK-10 Performance Test on Variable Compression Ratio		Ν	NARAYAN	A ENGIN	EERING CO	DLLEGE:G	UDUR				
SemesterHours / WeekTotal hrsCreditsMax MarksLTPhrsCCIESETOTALIV003481.54060100COURSE CONTENTTask 1Performance test on Spark Ignition engine and Compression Ignition using the alternate fuels.Task 1Performance test on Spark Ignition engine and Compression Ignition using the alternate fuels.Task-2Valve Timing Diagram of an 4 stroke diesel engine .TASK-3Port Timing Diagram of an 2-Stroke Petrol engine.TASK-4Performance Test on a 4-Stroke Diesel Engines.TASK-5Performance Test on 2-Stroke Petrol engine.TASK-6Evaluation of Engine friction by conducting Morse test on 4-Stroke Multi cylinderEngine.TASK-6Evaluation and motoring test on 4- stroke engine.TASK-6FASK-8Heat Balance of an I.C. Engine.TASK-9/Fuel Ratio and Volumetric Efficiency of an I.C. Engines.TASK-10Performance Test on Variable Compression Ratio Engines for CI Engines.TASK -11Performance Test on Reciprocating Air – Compressor Unit.TASK -12Study of Boilers.	21ME2504		THERM	AL ENGIN	IEERING L A	AB			R2021		
L T P C CIE SE TOTAL IV 0 0 3 48 1.5 40 60 100 COURSE CONTENT Task 1 Performance test on Spark Ignition engine and Compression Ignition using the alternate fuels. Task-2 Valve Timing Diagram of an 4 stroke diesel engine . TAsk-3 Port Timing Diagram of an 2-Stroke Petrol engine. TASK-4 Performance Test on a 4 -Stroke Diesel Engines. TASK-5 Performance Test on 2-Stroke Petrol engine. TASK-6 Evaluation of Engine friction by conducting Morse test on 4-Stroke Multi cylinderEngine. TASK-7 Retardation and motoring test on 4- stroke engine. TASK-7 Retardation and motoring test on 4- stroke engine. TASK-7 Retardation and motoring test on 4- stroke engine. TASK-8 Heat Balance of an I.C. Engine. TASK-9 Fuel Ratio and Volumetric Efficiency of an I.C. Engines. TASK-10	Semester		Hours / W	eek	Total hrs	Credits		Max Marks			
IV 0 0 3 48 1.5 40 60 100 COURSE CONTENT Task 1 Performance test on Spark Ignition engine and Compression Ignition using the alternate fuels. Task-2 Valve Timing Diagram of an 4 stroke diesel engine . Task-3 Port Timing Diagram of an 2-Stroke Petrol engine. TASK-4 Performance Test on a 4 -Stroke Diesel Engines. TASK-5 Performance Test on 2-Stroke Petrol engine. TASK-5 Performance Test on 2-Stroke Petrol engine. TASK-5 Performance Test on 2-Stroke Petrol engine. TASK-6 Evaluation of Engine friction by conducting Morse test on 4-Stroke Multi cylinderEngine. TASK-7 Retardation and motoring test on 4- stroke engine. TASK-7 Retardation and motoring test on 4- stroke engine. TASK-8 Heat Balance of an I.C. Engine. TASK-9 Fuel Ratio and Volume		L	Т	Р		С	CIE	SE E	TOTAL		
COURSE CONTENT Task 1 Performance test on Spark Ignition engine and Compression Ignition using the alternate fuels. Task-2 Valve Timing Diagram of an 4 stroke diesel engine . Task-3 Port Timing Diagram of an 2-Stroke Petrol engine. TASK-4 Performance Test on a 4 -Stroke Diesel Engines. TASK-5 Performance Test on 2-Stroke Petrol engine. TASK-6 Evaluation of Engine friction by conducting Morse test on 4-Stroke Multi cylinderEngine. TASK-7 Retardation and motoring test on 4- stroke engine. TASK-7 Retardation and motoring test on 4- stroke engine. TASK-7 Retardation and motoring test on 4- stroke engine. TASK-7 Retardation and motoring test on 1.C. Engine. TASK-9 /Fuel Ratio and Volumetric Efficiency of an I.C. Engines. TASK-10 Performance Test on Variable Compression Ratio Engines for CI Engines. TASK -11 Performance Test	IV	0	0	3	48	1.5	40	60	100		
Task 1 Performance test on Spark Ignition engine and Compression Ignition using the alternate fuels. Task-2 Valve Timing Diagram of an 4 stroke diesel engine . Task-3 Port Timing Diagram of an 2-Stroke Petrol engine. TASK-4 Performance Test on a 4 -Stroke Diesel Engines. TASK-5 Performance Test on 2-Stroke Petrol engine. TASK-5 Performance Test on 2-Stroke Petrol engine. TASK-6 Evaluation of Engine friction by conducting Morse test on 4-Stroke Multi cylinderEngine. TASK-7 Retardation and motoring test on 4- stroke engine. TASK-7 Retardation and motoring test on 4- stroke engine. TASK-7 Retardation and motoring test on 4- stroke engine. TASK-7 Retardation and Wolumetric Efficiency of an I.C. Engines. TASK-9 /Fuel Ratio and Volumetric Efficiency of an I.C. Engines. TASK-10 Performance Test on Variable Compression Ratio Engines for CI Engines. Additional Experiments TASK -11 <	COURSE CONTENT										
Task-2 Valve Timing Diagram of an 4 stroke diesel engine . Task-3 Port Timing Diagram of an 2-Stroke Petrol engine. TASK-4 Performance Test on a 4 -Stroke Diesel Engines. TASK-5 Performance Test on 2-Stroke Petrol engine. TASK-6 Evaluation of Engine friction by conducting Morse test on 4-Stroke Multi cylinderEngine. TASK-7 Retardation and motoring test on 4- stroke engine. TASK-8 Heat Balance of an I.C. Engine. TASK-10 Performance Test on Variable Compression Ratio Engines for CI Engines. Additional Experiments TASK -11 Performance Test on Reciprocating Air – Compressor Unit. TASK -12	Task 1 Performance test on Spark Ignition engine and Compression Ignition using the alternate fuels.										
Valve Timing Diagram of an 4 stroke diesel engine . Task-3 Port Timing Diagram of an 2-Stroke Petrol engine. TASK-4 Performance Test on a 4 -Stroke Diesel Engines. TASK-5 Performance Test on 2-Stroke Petrol engine. TASK-6 Evaluation of Engine friction by conducting Morse test on 4-Stroke Multi cylinderEngine. TASK-7 Retardation and motoring test on 4- stroke engine. TASK-8 Heat Balance of an I.C. Engine. TASK-9 /Fuel Ratio and Volumetric Efficiency of an I.C. Engines. TASK-10 Performance Test on Variable Compression Ratio Engines for CI Engines. Additional Experiments TASK -11 Performance Test on Reciprocating Air – Compressor Unit. TASK -12 Study of Boilers.				Task-2							
Task-3 Port Timing Diagram of an 2-Stroke Petrol engine. TASK-4 Performance Test on a 4 -Stroke Diesel Engines. TASK-5 Performance Test on 2-Stroke Petrol engine. TASK-6 Evaluation of Engine friction by conducting Morse test on 4-Stroke Multi cylinderEngine. TASK-7 Retardation and motoring test on 4- Stroke engine. TASK-7 Retardation and motoring test on 4- stroke engine. TASK-8 Heat Balance of an I.C. Engine. TASK-9 /Fuel Ratio and Volumetric Efficiency of an I.C. Engines. TASK-10 Performance Test on Variable Compression Ratio Engines for CI Engines. Additional Experiments TASK -11 Performance Test on Reciprocating Air – Compressor Unit. TASK -12 Study of Boilers.	Valve Timing Di	agram of an 4	stroke diese	el engine							
Port Timing Diagram of an 2-Stroke Petrol engine. TASK-4 Performance Test on a 4 -Stroke Diesel Engines. TASK-5 Performance Test on 2-Stroke Petrol engine. TASK-6 Evaluation of Engine friction by conducting Morse test on 4-Stroke Multi cylinderEngine. TASK-7 Retardation and motoring test on 4- stroke engine. TASK-7 Retardation and motoring test on 4- stroke engine. TASK-8 Heat Balance of an I.C. Engine. TASK-9 /Fuel Ratio and Volumetric Efficiency of an I.C. Engines. TASK-10 Performance Test on Variable Compression Ratio Engines for CI Engines. Additional Experiments TASK -11 Performance Test on Reciprocating Air – Compressor Unit. TASK -12 Study of Boilers.		ugruin or un +	stroke dies	Task-3							
Fort Thining Diagram of an 2-Stroke Petrol engine. TASK-4 Performance Test on a 4 -Stroke Diesel Engines. TASK-5 Performance Test on 2-Stroke Petrol engine. TASK-6 Evaluation of Engine friction by conducting Morse test on 4-Stroke Multi cylinderEngine. TASK-7 Retardation and motoring test on 4- stroke engine. TASK-7 Retardation and motoring test on 4- stroke engine. TASK-8 Heat Balance of an I.C. Engine. TASK-9 /Fuel Ratio and Volumetric Efficiency of an I.C. Engines. TASK-10 Performance Test on Variable Compression Ratio Engines for CI Engines. Additional Experiments TASK -11 Performance Test on Reciprocating Air – Compressor Unit. TASK -12 Study of Boilers.	Dont Timing Dia	man of an 2 S	tualta Datual	longing							
Performance Test on a 4 -Stroke Diesel Engines. TASK-5 Performance Test on 2-Stroke Petrol engine. TASK-6 Evaluation of Engine friction by conducting Morse test on 4-Stroke Multi cylinderEngine. TASK-7 Retardation and motoring test on 4- stroke engine. TASK-7 Retardation and motoring test on 4- stroke engine. TASK-8 Heat Balance of an I.C. Engine. TASK-9 /Fuel Ratio and Volumetric Efficiency of an I.C. Engines. TASK-10 Performance Test on Variable Compression Ratio Engines for CI Engines. Additional Experiments TASK -11 Performance Test on Reciprocating Air – Compressor Unit. TASK -12 Study of Boilers.	Port Timing Diag	gram of an 2-5	troke Petrol	TASK-4							
Performance Test on a 4 -Stroke Diesel Engines. TASK-5 Performance Test on 2-Stroke Petrol engine. TASK-6 Evaluation of Engine friction by conducting Morse test on 4-Stroke Multi cylinderEngine. TASK-7 Retardation and motoring test on 4- stroke engine. TASK-8 Heat Balance of an I.C. Engine. TASK-8 Heat Balance of an I.C. Engine. TASK-9 /Fuel Ratio and Volumetric Efficiency of an I.C. Engines. TASK-10 Performance Test on Variable Compression Ratio Engines for CI Engines. Additional Experiments TASK -11 Performance Test on Reciprocating Air – Compressor Unit. TASK -12 Study of Boilers.				14013-4							
TASK-5 Performance Test on 2-Stroke Petrol engine. TASK-6 Evaluation of Engine friction by conducting Morse test on 4-Stroke Multi cylinderEngine. TASK-7 Retardation and motoring test on 4- stroke engine. TASK-7 Retardation and motoring test on 4- stroke engine. TASK-7 Retardation and motoring test on 4- stroke engine. TASK-8 Heat Balance of an I.C. Engine. TASK-9 /Fuel Ratio and Volumetric Efficiency of an I.C. Engines. TASK-10 Performance Test on Variable Compression Ratio Engines for CI Engines. Additional Experiments TASK -11 Performance Test on Reciprocating Air – Compressor Unit. TASK -12 Study of Boilers.	Performance Tes	t on a 4 -Strok	e Diesel En	igines.							
Performance Test on 2-Stroke Petrol engine. TASK-6 Evaluation of Engine friction by conducting Morse test on 4-Stroke Multi cylinderEngine. TASK-7 Retardation and motoring test on 4- stroke engine. TASK-8 Heat Balance of an I.C. Engine. TASK-9 /Fuel Ratio and Volumetric Efficiency of an I.C. Engines. TASK-10 Performance Test on Variable Compression Ratio Engines for CI Engines. Additional Experiments TASK -11 Performance Test on Reciprocating Air – Compressor Unit. TASK -12 Study of Boilers.				1ASK-5							
TASK-6 Evaluation of Engine friction by conducting Morse test on 4-Stroke Multi cylinderEngine. TASK-7 Retardation and motoring test on 4- stroke engine. TASK-8 Heat Balance of an I.C. Engine. TASK-9 /Fuel Ratio and Volumetric Efficiency of an I.C. Engines. TASK-10 Performance Test on Variable Compression Ratio Engines for CI Engines. Additional Experiments TASK -11 Performance Test on Reciprocating Air – Compressor Unit. TASK -12 Study of Boilers.	Performance Test on 2-Stroke Petrol engine.										
Evaluation of Engine friction by conducting Morse test on 4-Stroke Multi cylinderEngine. TASK-7 Retardation and motoring test on 4- stroke engine. TASK-8 Heat Balance of an I.C. Engine. TASK-9 /Fuel Ratio and Volumetric Efficiency of an I.C. Engines. TASK-10 Performance Test on Variable Compression Ratio Engines for CI Engines. Additional Experiments TASK -11 Performance Test on Reciprocating Air – Compressor Unit. TASK -12 Study of Boilers.		TASK-6									
TASK-7 Retardation and motoring test on 4- stroke engine. TASK-8 Heat Balance of an I.C. Engine. TASK-9 /Fuel Ratio and Volumetric Efficiency of an I.C. Engines. TASK-10 Performance Test on Variable Compression Ratio Engines for CI Engines. Additional Experiments TASK -11 Performance Test on Reciprocating Air – Compressor Unit. TASK -12 Study of Boilers.	Evaluation of E	ngine friction b	y conduction	ng Morse te	est on 4-Strok	e Multi cylii	nderEngine				
Retardation and motoring test on 4- stroke engine. TASK-8 Heat Balance of an I.C. Engine. TASK-9 /Fuel Ratio and Volumetric Efficiency of an I.C. Engines. TASK-10 Performance Test on Variable Compression Ratio Engines for CI Engines. Additional Experiments TASK -11 Performance Test on Reciprocating Air – Compressor Unit. TASK -12 Study of Boilers.				TASK-7		· · ·					
TASK-8 Heat Balance of an I.C. Engine. TASK-9 /Fuel Ratio and Volumetric Efficiency of an I.C. Engines. TASK-10 Performance Test on Variable Compression Ratio Engines for CI Engines. Additional Experiments TASK -11 Performance Test on Reciprocating Air – Compressor Unit. TASK -12 Study of Boilers.	Retardation and	motoring test of	on 4- stroke	engine.							
Heat Balance of an I.C. Engine. TASK-9 /Fuel Ratio and Volumetric Efficiency of an I.C. Engines. TASK-10 Performance Test on Variable Compression Ratio Engines for CI Engines. Additional Experiments TASK -11 Performance Test on Reciprocating Air – Compressor Unit. TASK -12 Study of Boilers.				TASK-8							
TASK-9 /Fuel Ratio and Volumetric Efficiency of an I.C. Engines. TASK-10 Performance Test on Variable Compression Ratio Engines for CI Engines. Additional Experiments TASK -11 Performance Test on Reciprocating Air – Compressor Unit. TASK -12 Study of Boilers.	Heat Dalamaa of	on I.C. Enging									
/Fuel Ratio and Volumetric Efficiency of an I.C. Engines. TASK-10 Performance Test on Variable Compression Ratio Engines for CI Engines. Additional Experiments TASK -11 Performance Test on Reciprocating Air – Compressor Unit. TASK -12 Study of Boilers.	Heat Dalalice of a	all I.C. Eligille	•	TASK-9							
/Fuel Ratio and Volumetric Efficiency of an I.C. Engines. TASK-10 Performance Test on Variable Compression Ratio Engines for CI Engines. Additional Experiments TASK -11 Performance Test on Reciprocating Air – Compressor Unit. TASK -12 Study of Boilers.											
Performance Test on Variable Compression Ratio Engines for CI Engines. Additional Experiments TASK -11 Performance Test on Reciprocating Air – Compressor Unit. TASK -12 Study of Boilers.	/Fuel Ratio and V	/olumetric Eff	iciency of a	in I.C. Engi	nes.						
Performance Test on Variable Compression Ratio Engines for CI Engines. Additional Experiments TASK -11 Performance Test on Reciprocating Air – Compressor Unit. TASK -12 Study of Boilers.				1 ASK-10							
Additional Experiments TASK -11 Performance Test on Reciprocating Air – Compressor Unit. TASK -12 Study of Boilers.	Performance Tes	t on Variable (Compressio	n Ratio Eng	gines for CI E	ngines.					
TASK -11 Performance Test on Reciprocating Air – Compressor Unit. TASK -12 Study of Boilers.				Additio	nal Experime	ents					
Performance Test on Reciprocating Air – Compressor Unit. TASK -12 Study of Boilers.				TASK -11	l						
TASK -12 Study of Boilers.	Performance Tes	t on Reciproca	ting Air – C	Compressor	Unit.						
Study of Bollers.	Ctor to a CD 1			TASK -12	2						
	Study of Boilers										

1. Vasandani V.P. and Kumar, D.S., Treatise on Heat Engineering, Chand & Co Publishers, New Delhi,2011.

2.Ganesan, V., Gas Turbines 3rd Edition, Tata McGraw Hill Book Company, New Delhi,2010.

3. Internal Combustion Engines / V. Ganesan- TMH, 4thEdition, 2012

4. Thermal Engineering / Rajput / Lakshmi Publications, 9thEdition, 2013

Reference Book(s):

1.I.C. Engines fundamentals, Heywood, McGraw-Hill, 1st Edition,2011

2. IC Engines – Mathur & Sharma – DhanpathRai&Sons,,2010

3. Engineering fundamentals of IC Engines – Pulkrabek, Pearson, PHI, 2ndEdition, 2009

4. Thermal Engineering, Rudra moorthy - TMH, 10thEdition, 2010

NARAYANA ENGINEERING COLLEGE:GUDUR										
21ME2505		•	Mechanics	of Solids I	/ab			R2021		
Semester		Hours /	Week	Total	Credit		Max Ma	rks		
	L	Т	Р	hrs	С	CIE	SEE	TOTAL		
IV	0	0	3	48	1.5	40	60	100		
COURSE CONTENT										
	Task 1 Tension on U.T.M.									
Study the stre	ss – strain 1	elations of	(a) Mild St	eel b) Cast on U.T.M	iron and (c)) Tor Steel	be conduct	ing tension test		
]	Task 2 Com	pression to	est on U.T.	М.			
Study the stres	ss – strain r	elations of ((a) Mild Ste	eel b) Cast i	ron and (c) M	Tor Steel b	oe conducti	ng		
			Tas	k-3 Compi	essive and	Shear stro	ength.			
Find the cor	npressive a	nd shear sti	ength of w	ood and she tests.	ar strength	of GI sheet	t by conduc	cting relevant		
TASK -4 Brinnell's and Vicker's hardness.										
Find	l the Brinne	ll's and Vie	cker's hard	ness number	rs of (a) Ste	el (b) Bras	s (c) Alumi	nium		
				(d) Copper						
				TASK -5	Modulus	of rigidity.				
Determine the	Modulus o	f rigidity (a) Solid sha	ft (b) Hollo	w shaft ma	de of steel a	and			
			aluminium							
		TAS	SK-6 Comj	pression an	d Tensile t	tests.				
Find the sprin	g index and	l modulus c compres	of rigidity of ssion and te	f the materi ensile tests.	al of a sprin	ng by condu	ucting			
				TASK	-7 Deflect	tion test.				
Determine the	Young's m	nodulus of t	he material	by conduct	ing deflect	ion test on	a simply			
		supporte	d, and cont	inuous bear	ns.					
				TASK	-8 Deflect	tion test.				
Determine	the Young'	s modulus o	of the mater	rial by cond	ucting defl	ection test of	on propped			
			cantileve	er beam						
			TASK -	9 Impact s	trength .					
	Find i	mpact strer	igth of a give	ven materia	l by conduc	cting a Char	rpy test			
		_		TASK -	10 Impact	strength.	_			
	Find	impact stre	ength of a g	iven materia	al by condu	icting a Izo	d test			

Additional Experiments:
TASK -11 Deflection.
Determine the deflection in leaf spring with a single leaf and multiple leafs.
TASK -12 Bending Test

Determine the bending stress by conducting Bending test on 1. Mild steel 2. Wood

VirtualLabs

http://sm-nitk.vlabs.ac.in/

1. F.P.Beer, E.R.Johnston, Jr&John.T.DeWolf, "Mechanics of Materials", 7thedition, TataMcGraw-Hill, 2016.

2. SS Rattan, Strength of materials, 3rd edition, Tata McGraw-Hill,2016.

3. Strength of Materials by R.K. Bansal, Laxmi Publishers, 5thEdition,2012.

4. Mechanics of Materials, Andrews Pytel, JaanKiusallaas&M.M.M.Sarcar (SecondEdition), Cengage Learning Publishers.

Reference Book(s):

1. Timoshenko, "Strength of Materials Part-I& II", 3rd edition, CBS Publishers, 2004.

2. Popov, "Mechanics of Solids", 2nd edition, New Pearson Education, 2015

3. R.K.Rajput, Strength of materials, S.Chand Publications, Revised Edition, 2006.

4. Strength of Materials by M.Chakraborti, S.K.Kataria& Sons, 2ndEdition,2011.

List of B.Tech R21 III &IV Year Subjects, and Labs

V-SEMESTER

S.No	BOS Subjects of Department of Mechanical Engineering	Sem/Branch	Category
1.	Design of Machine Elements	V SEM	PC
2.	Machine Tools	V SEM	PC
3.	Thermal Power Systems	V SEM	PC
4.	CAD & Simulation Lab	V SEM	PC
5.	Design Thinking ∏ Innovation Lab	V SEM	PC
6.	Machine Tools Lab	V SEM	PC

NARAYANAENGINEERINGCOLLEGE:GUDUR									
]	DESIGN	NOF MACH	INE ELEM	ENTS	NECR E	BTECH (R21)	
Semester	Hours	/ Week		Total hrs	Credits	Max M	arks		
	L	Т	Р		С	CIE	SEE	TOTAL	
V	3	0	0	48	3	40	60	100	
				COURSE (CONTENT				
MODULE- I			DESI	GN FOR STA	ATIC & DY	YNAMIC LO	DADS	10 Hrs	
Mechanical Engineering Design: Design process, design considerations, codes and standards of designation									
of materials, s	election	on of m	naterials	. Design for	Static Loa	ds: Modes of	f failure, desig	gn of components	
subjected to an	xial, b	ending,	torsion	al and impac	et loads. Th	neories of fail	lure for static	loads. Design for	
Dynamic Load	s: Enc	lurance	limit, f	atigue strengt	th under ax	ial, bending a	and torsion, st	ress concentration,	
notch sensitivi	ty. Ty	pes of	fluctuat	ing loads, fa	tigue desig	n for infinite	e life. Fatigue	theories of	
failure.Soderbe	erg, G	oodman	and m	odified Good	dman criter	ion for fatigu	ie failure. Fat	igue design under	
combined stresses.									
MODULE-II	MODULE-II DESIGN OF BOLTED JOINTS & WELDED JOINTS 9 Hrs								
Design of Bolted Joints: Threaded fastners, preload of bolts, various stresses induced in the bolts.									
Torquerequirement for bolt tightening, eccentrically loaded bolted joints, gasketed joints.									
Welded Joints:	Streng	gth of la	p and b	utt welds, ecc	entrically le	baded welded	joints. Joints s	subjected to	
ending and tor	sion.								
MODULE-III			D	ESIGN OF S	HAFTS &	COUPLING	S	10 Hrs	
Power Transmi	ssion	Shafts:	Design	of shafts subj	ected to ber	ding, torsion	and axial load	ing. Shafts	
subjected to flu	ctuatii	ng loads	s using	shock factors	s. Coupling	s: Design of	flange and bus	shed pin couplings,	
universal coupl	ing.			DEGLC		DINCE		1011	
MODULE-IV				DESIG	N OF BEAL	KING5		IUHrs	
Design of Slid	ing Co	ontact E	Bearings	: Lubrication	modes, be	aring modulu	is, McKee's eq	uations, design of	
journal bearing	g. Bear	ring Fai	lures. L	esign of Rol	ling Contac	t Bearings: S	tatic and dyna	mic load capacity,	
Stribeck's Equ	ation,	equiva	lent bea	aring load, lo	bad-life rela	ationships, lo	ad factor, sele	ection of bearings	
from manufact	urer's (catalogu	ie.	DECL				OU	
MODULE-V			1	DESI	GN OF GE			9Hrs	
Design of Gear	rs: Spi	ur gears	, beam	strength, Lew	is equation	, design for d	iynamic and w	ear loads, design	
of nelical gears							TT	40 11	
						Total	Hours	48 Hrs	

TEXT BOOK

- J.E. Shigley, "Mechanical Engineering Design", 2nd edition, Tata McGraw Hill, 1986.
 V.B.Bhandari, "Design of Machine Elements", 3rd edition, Tata McGraw Hill, 2010.

REFERENCES:

- R.L. Norton, "Machine Design an Integrated approach", 2nd edition, Pearson Education, 2004. 1.
- 2. R.K. Jain, "Machine Design:, Khanna Publications, 1978.
- 3. M.F.Spotts and T.E.Shoup, "Design of Machine Elements", 3rd edition, Prentice Hall (Pearson Education), 2013.

NARAYANA ENGINEERING COLLEGE:GUDUR								
				MACHINE	TOOLS		NECR B	TECH R21
Semester	Hours	Week		Total hrs	Credits	Max Mar	ks	
	L	Т	Р		С	CIE	SEE	TOTAL
V	3	0	0	48	3	40	60	100
COURSE CONTENT								
MODULE- I				THEORY O	F METAL	CUTTING		10 Hrs
Theory of Metal Cutting: Introduction, Basic elements of machining, Nomenclature of single point cutting tool, Tool Geometry, Mechanics of chip formation, Types of chips. Determination of shear angle and chip thickness ratio, stress and strain in the chip, velocity relations, Merchant's theory of orthogonal cutting forces, related simple problems. Tool wear, Tool life and Tool life criteria, cutting fluids- types and required characteristics. Cutting Tool								
MODULE-II			001 1114		IE MACH	INFS		9 Hrs
Lathe: Constru	Ictions	1 detail	e ener	ifications cla	sification	of lathes Lath	e accessoria	y rious work
holding devices Lathe Mechanisms: Spindle speed Mechanisms in Belt driven and All Geared Head stock lathe, Apron and Half-nut mechanisms. Lathe operations including taper turning and thread cutting and related problems								
MODULE-III			DR	LILING . SI	HAPING A	ND PLANING		10 Hrs
Constructional details, types p mechanisms sh	Constructional details, Shaping Machines, types of shapers ,Constructional details Planing:, Constructional details, types planers, specifications, Quick Return Mechanism in shapers and planers, automatic feed mechanisms shapers and planers.							
MODULE-IV			M	ILLING MA	CHINES	9Hrs	8	
Milling Mach milling machin cutters,Indexin	ines: nes, D g meth	Workin escriptio ods and	g Prino on and I Indexi	ciple, Size a working of ng Head, rela	and Specifi Universal M ted simple p	cation, Up an Ailling machine problems	d Down M e. Milling o	Ailling, Types of perations, Milling
Crinding Mool	inco	Tuna	of anin	dina mashina		tional dataila	arin dri aal	ioiiis
surface grindir specification of Operations: Ho	Grinding Machines: Types of grinding machines: constructional details, cylindrical, center less and surface grinding machines. Tool and cutter grinding machines. Wheel materials, Selection and specification of grinding wheels, Truing and Dressing of grinding wheels, Surface Finishing							
1	U		0 1			Total H	lours	48 Hrs
ТЕХТ ВООК								
1. Worksh 2. Product REFERENCES 1. Materia	op Tec ion En S: ls and i	hnolog gineerir Process	y Vol. I 1g by P. es in M	I by Hazra Cl C. Sharma, S anufacturing	nowdary 200 .Chand & C by E.Paul D)8 o. 1999 e Garmo, J.T.B	lack and Ro	nald
A.Kohs 2 Manufa	er.2019) Techn	ology h	ν Ρ Ν Ρασ Τ	MH 2017			

Manufacturing Technology by P.N.Rao, TMH. 2017
 Manufacturing Science by Ghosh & MallickEd, 2014.

	NAR	AYANAE	NGINEE	RINGCOI	LEGE:GU	DUR		
		I	THERMA	L POWE	R SYSTEM	IS		NECR BTECH R21
Semester	Hours/ We	eek		Total	Credits		Max Marks	
	L	Т	Р	hrs	С	CIE	SEE	TOTAL
V	3	0	0	48	3	40	60	100
			COURS	SE CONTI	ENT			
MODULE-1		S	TEAM PO	OWER PL	ANT & BO	ILERS	5	09Hours
 Steam Power Plant: Rankine cycle -Thermodynamic analysis, Concept of mean temperature of heat addition, Methods to improve cycle performance – Regeneration & Reheating. Boilers: Classification – Working principles LP & H.P. boilers – Mountings and accessories – Working principles – Boiler horse power, Equivalent evaporation, Efficiency– Draught, Classification – Height of chimney for given draught and discharge. 								
MODULE-2	I	S	TEAM N	OZZLES	& CONDE	NSER	5	10Hours
Steam Nozzles	• Stagnatio	on Properti	= Eunc	tion of a r	a conditional and a conditio	nlicatio	ons and types	– Flow through
saturated flow– Steam Conder principle of diff	saturated flow– Degree of super saturation and degree of under cooling - Wilson line. Steam Condensers: Requirements of steam condensing plant – Classification of condensers – Working principle of different types – Vacuum efficiency and condenser efficiency							
MODULE-3	MODULE-3 STEAM TURBINES 10Hours							
Impulse Turb friction – Powe rotor speed – V Reaction Turb Degree of react – Velocity diag	ines: Class or develope elocity and bines: Mec ion ram – Pars	d, axial the d ressure chanical de on's reaction	Impulse T rust, Blade compound tails – Pri on turbine	urbine, Me or diagram ing – Com inciple of – Condition	whanical de n efficiency- bined veloci- operation, t n for maxim	tails – – De-la ity diag hermoc	Velocity diag aval turbine-Me ram for Impuls lynamic analys iciency.	ram – Effect of ethods to reduce se turbine. sis of a stage –
MODULE-4		G	AS TURB	INES & J	ET PROPU	JLSIO	N	09Hours
Gas Turbines: Simple gas turbine plant –Essential components – Parameters of performance – Actual cycle –Regeneration, Inter cooling and reheating – Closed and Semi-closed cycles. Jet Propulsion: Classification of jet propulsive engines – Working principles with schematic diagrams and T-s diagram - Turbo jet engines Rockets: Application – Working principle – Classification – Propellant type – Thrust, Propulsiveefficiency.								
MODULE-5		REF	'RIGERA'	TION & A	IR CONDI	TION	ING	10Hours
 Refrigeration: Bell-Coleman cycle - Vapor compression cycle, sub cooling and super heating-Vapor absorption cycle, properties of common refrigerants. Air Conditioning: Principles of Psychrometry Psychometric properties, psychometric processes, summer and winter airconditioning systems. 								
							Totalhours:	48hours

1. R. K. Rajput (2010), A text book of Thermal Engineering, Fourth Edition, Laxmi Publications, New Delhi, India.

2. Thermal Engineering by R S Khurmi & GK Guptha6thedition.2006

3. Principles of Applied Thermodynamicsbymorani8THedition,SIversion.2015

Reference Book(s):

- 1. Yonus A Cengel and Michael A Boles, Applied Thermodynamics: An Engineering Approach,McGrawHill, 2002.
- 2. Thermal EngineeringbyR. Yadav 5THedition,LaxmiPublications,NewDelhi,India.2020
- 3. Applied Thermodynamics, work and heat-transfer by Gordonrogers4THedition, personeducation india2002.

NARAYANA ENGINEERING COLLEGE:GUDUR										
		Design Tl	ninking &	Product I	nnovation	Lab	Ν	NECR BTECH R21		
Semester	H	Iours / Wee	ek	Total	Credit		М	ax Marks		
	L	Т	Р	hrs	C	CIE	SEE	TOTAL		
V	0	0	3	48	1.5	40	60	100		
	COURSE CONTENT									
Task 1 - [4hrs]										
Design A Device For conversion of linear motion to rotary motion and vice versa,										
	Task 2 – [4 hrs]									
	Design a device for the measurement of Temperature/ and pressure									
			Task -3-	[4hrs]						
		Des	sign a devi	ce for the 1	neasureme	nt of Humi	dity			
			TASK -4	[4 hrs]						
			Design a	device for `	Water Leve	l Indicator				
			TASK -5	[4 Hrs]						
	Desi	gn of simpl	e pneumat	ic and hyd	raulic circu	its using ba	asic coi	nponents		
			TASK-6	[4 hrs]						
	Design	a hydrauli	c circuit b	y using Flo	w Control	Valves for	simple	application		
TASK -7 [4 Hrs]										
Design Automatic Car Wiper/ safety issues in Automobiles										
TASK -8 [4 Hrs]										
	Design and Simulation of a Smart Lighting system with IOT technology									
			TASK -9	[4 hrs]						
Desig	n and man	ufacture ar	ny two don	nestic utilit	y products	with any m	naterial	Use of Power Tools		
		I	TASK -1([4 hrs]						
	Rev	ersing engi	ineering m	ethods, ide	entifying the	e bad featu	res in a	product		
		ADDIT	IONAL E	XPERIMI	ENTS					
			TASK -1	l [4 hrs]						
De	esign and n	nanufacturi	ng of any	mechanica	l componer	nt by using	3D pri	nting technology.		
			TASK -12	[4 hrs]						
Impor	tance of er	gonomics i	n product	developme	nt, environ	mental con	siderat	ions in design, safety		
	cons	iderations i	n design -	Design of e	electrical ve	ehicles, uni	nanned	vehicles		
Text Book	x(s):									
1. Philip Ko	osky, Robe	ert T. Balm	er, Willian	n D. Keat,	George Wi	se, "Explo	ring			
Engineering	g: An Intro	duction to	Engineerii	ng and Des	ign", 4th eo	lition, Else	vier, 20	016.		
2. David Ra	alzman, "H	listory of M	Iodern Des	sign", 2nd	edition, La	urence Kin	g Publi	shing		
Ltd., 2010	5 1 //5				0010					
3. An AVA	Book, "D	esign Thin	king", AV	A Publishi	ng, 2010					
Reference	Book(s):									
1. G. Pahl,	W.Beitz, J	. Feldhuser	n, KH Grot	te, "Engine	ering Desig	gn: A Syste	ematic			
Approach",	3rd editio	on, Springer	r, 2007.		•					
2. Tom Kel	ley, Jonath	nan Littmar	n, "Ten Fao	ces in Inno	vation", Cu	rrency Boo	oks, 200	06.		

NARAYANAENGINEERINGCOLLEGE::GUDUR										
	MACHINE TOOLS LAB NECR BTED									
Semester	Hours /Week			Total	Credit	Max Marks				
	L	Т	Р	hrs	С	CIE	SEE	TOTAL		
V	0	0	3	48	1.5	40	60	100		

COURSECONTENT
Task1 [4Hrs]
Step turning and taper turning on lathe machine
Step turning and taper turning on fathe machine
Task2 [4Hrs]
Drilling operation using lathe machine
Task-3 [6Hrs]
Boring and Internal threading on lathe machine,
TASK-4 [4Hrs]
Knurling and Thread Cutting on lathe machine
TASK-5 [6Hrs]
Key way on shafts by using shaping machines
TASK-6 [6Hrs]
Key-way on shafts using milling machine
TASK-7 [4Hrs]
Gear Hobbing using milling machine
TASK-8 [4Hrs]
At least one model on surface grinder or tool and cutter
grinder.
TASK-9 [4Hrs]
Spur Gear cutting by using Milling Machine
TASK-10 [4Hrs]
Drilling operations by using drilling machine
ADDITIONAL EXPERIMENTS [2Hrs]
TASK-11 Tapping operations by using drilling
machineTASK 12- At least one model on cylindrical grinder
Text Book(s):
1 W. A.J.Chapman, Workshop Technology Part I, ELBS & Edward Arnold Publishers.
2 A charkan N Machine ToolDesignVol 1to4 MIRPublication

A Charkan.IN.IVIachine ToolDesignVol.Ito4,MIR
 HMT,ProductionTechnology,TataMcGrawHill.

Reference Book(s):

1 .Hajra Choudary, Elements of workshop technology, Vol I&II, Media Publishers,2008

2.MalkinStephen, Grinding Technology: Theory and Applications of Machining with Abrasives, Industrial press, 2008

3..PoulDeGarmo, J.T.Black, R.A.Kosher, Materials and Processes in Manufacturing, Prentice Hall of IndiaPvt.Ltd.,1997.

VI - SEMESTER

S.No	BOS Subjects of Department of Mechanical Engineering	Sem/Branch	Category
1.	Computer IntegratedManufacturing	VISEM	PC
2.	Dynamics of Machinery	VI SEM	PC
3.	Heat Transfer	VI SEM	PC
4.	Computer Aided Manufacturing Lab	VI SEM	PC
5.	Heat Transfer Lab	VI SEM	PC

		NA	RAYANA H	ENGINEER	ING COLL	EGE: GUI	DUR	
	CO	MPUTER I	NTEGRATI	ED MANUF	ACTURIN	Ĵ	NECR BTEC	H R21
Semester	H	Hours / Weel	ĸ	Total hrs	Credits		Max Marks	
	L	Т	Р		С	CIE	SEE	TOTAL
VI	3	0	0	48	3	40	60	100
			COU	RSE CONT	ENT			I
Ν	MODULE –	1	INTRODU	CTION TO	CAD/CAM		10h	
Brief intro	duction to C	CAD and C	AM – Man	ufacturing F	lanning, M	anufacturin	ig control – (Concurrent
Engineering	g- CIM conce	epts – Comp	outerized eler	ments of CIN	∕I system −T	ypes of pr	oduction – Ma	thematical
models of	Production I	Performance	– Simple p	roblems – M	Ianufacturin	g Control	- Basic Elem	ents of an
Automated	system – Lev	els of Autor	nation.					
]	MODULE -2	2	COMPUT	ER AIDED	PROCESS		10h	
			P	LANNING				
Process pla	nning – Con	nputer Aideo	d Process Pla	anning (CAP	P) – Logica	l steps in	Computer Aid	ed Process
Planning –	benefits of	CAPP -Pro	duction Plan	ning and Co	ontrol System	ms -Master	r Production S	Schedule –
Material Re	equirement pl	lanning - inp	outs to MRP	system, work	ting of MRP	, outputs a	nd benefits - ir	ntroduction
to Capacity	Planning -Co	ontrol Syster	ns-Shop Floc	or Control.				
	MODULE-3	8	COMPU	TER NUM	ERICAL		9h	
				CONTROL				
Introduction	n to CNC, c	omponents of	of CNC, CN	C programn	ning- manua	l part prog	gramming, G	Codes, M
Codes, N C	odes, program	mming of sin	mple compor	ents in turni	ng, drilling a	and milling	systems, prog	ramming
with cannee	l cycles. Cutt	er radius con	npensations.					
			Г					
	MODULE-4		CELLULA	R MANUFA	CTURING		10h	
				FLEXIBL				
			MANUFA	CTURING	SYSTEM			
a	1 (077)	<u> </u>		(FMS)			· · · ·	D 1 1
Group Tech	nology(GT)	, Part Famil	ies – Parts C	lassification	and coding	, Part Cod	ing system –	Production
flow Analy	sıs – Cellul	ar Manufact	turing – Coi	nposite part	concept –	Machine c	cell design and	d layout –
Arranging I	Machines in a	GT cell - T	ypes of Flexi	bility		. 10		10111
FMS - FM	S Componer	A = FMS A	Application 8	z Benefits –	FMS Plann	ing and Co	ontrol-Automat	ed Guided
Venicle Sy	stem (AGVS	() - AGVS	Application	- venicle C	uidance tec	nnology –	Venicle Mana	igement &
SaletyInt		Automated S	torage and K	etrieval Syst	ems		Oh	
Dobot Anot	MODULE-S) latad Attribu	INDUS	I KIAL KOB	bota Pohot	Control	9n ustoms End l	Effectors
Sensors in	Robotics –	Robot Acci	ites – Classif	eneatability	- Industrial	Robot Ar	$v_{\text{polications}} = 1$	Robot Part
Programmi	ng – Robot A	ccuracy and	Repeatabilit	V	maastriar	nooot rip	pricutions 1	
	0	2	1	Тс	tal hours.	48 hours		
Toyt Dook	(a)•				in nours.	to nours		
1 .Mikell P	(8): Groover "Au	tomation. Pr	oduction Sys	tems and Co	mputer Integ	rated Man	ufacturing". Pr	entice
Hallof India	a, 2008.		0 95					
2. Radhakri	shnan P, Sub	ramanyan S.	and Raju V.,	"CAD/CAM	I/CIM", 2nd	Edition, N	ew Age Interna	ational
(P)Ltd, New	v Delhi, 2000).						
Reference	Book:)lounie - A	Locio-1 A		Charrier	0-II-11 I	dag 1005	
1.Principles	OI Process I	rianning – A	Logical App	broach	Cnapman	&Hall, Loi	nuon, 1995	

		N	ARAYA	NA ENGI	NEERING	G COLLEGI	E:GUDUR		
			DYN	AMICS O	F MACHI	NERY	NEC	R B	ΓECH R21
Semester	Hours	/ Wee	k	Totalhrs	Credit	s MaxMark	S		
	L	Т	Р		С	CIE	SEE	TO	TAL
VI	3	0	0	48	3	40	60	100)
				COURSE	CONTE	NT			
MODULE- I		P	RECESS	SION, TU	RNING N	IOMENT D	IAGRAMS A	ND	10 Hrs
					FLYW	HEELS			
PRECESSION:	Gyros	copes,	, effect of	f precession	n motion	on the stabili	ty of moving	vehic	les such as motor
car, motor cycle,	aero	olanes	and ship	s.					
TURNING MON	MENT	DIA	GRAMS	AND FLY	WHEELS	S: Turning m	oment diagram	ns for	steam engine, IC
Engine and mu	lti cyl	inder	engine.	Crank effe	ort - coet	ficient of F	luctuation of	energ	gy, coefficient of
Fluctuation of sp	eed –	Fly w	heels and	their desig	n, Fly wh	eels for Punc	hing machines	•	
MODULE-II					GOVE	RNORS			9 Hrs
GOVERNORS:	Watt,	Porte	er and P	roell gove	ernors. Sp	ring loaded	governors -	Harti	nell and Hartung
governors with a	uxilia	y spri	ngs. Sens	sitiveness, i	sochronis	m and huntin	g. Effort and p	ower	of a governor.
MODULE-III			BALAN	CING OF	ROTAT	NG & REC	IPROCATIN	J	10 Hrs
					MAS	SES			
BALANCING:	Balan	cing	of rotati	ng masses	- single	e and multi	ple – single	and	different planes.
BALANCING (OF R	ECIPI	ROCATI	NG MASS	SES: Prin	nary and Se	condary balar	ncing	of reciprocating
masses. Analytic	cal and	l grap	hical met	hods. Unb	alanced for	orces and cou	uples -Vengine	e, mu	lti cylinder inline
and radialengine	s for p	rimar	y and sec	ondary bala	ancing				
MODULE-IV					VIBRA	TIONS			10Hrs
Free and forced	vibrati	on of	single deg	gree of free	dom syste	m, Role of da	amping, whirlin	ng of	shafts and critical
speeds. Simple p	robler	ns on	free, forc	ed and dan	ped vibra	tions.			
MODULE-V			VIBRA	TION ISO	LATION	& TRANS	AISSIBILITY		9Hrs
Vibration Isolati	on &	Trans	missibilit	v. Transve	erse vibra	tions of bear	ns with conce	ntrate	ed and distributed
loads. Dunkerly'	s meth	10d. R	aleigh's r	method. To	rsional vi	brations - two	and three roto	or svs	tems.
TEVT POOK		,						J	
1 SS Battan "Th	POTU (of Mar	chines" N	AGH Dubli	chore 3rd	Edition 2013			
2 R I Norton "I	Cory (Zinem	atics :	and Dyna	mics of Ma	chinery"	Tata McGray	v Hill 2009		
DEFEDENCES.	XIIICIII				cillicity ,		w IIII.2007		
1 Thomas beyan	"Theo	rv of	machines	" Pearson	3rd editic	n 2012			
1. Thomas bevan, 2. Shiglev et al "7	"Theo Theory	ry of a	machines	", Pearson, 1d mechani	3rd editions of C	n,2012. Dxford interna	tional student	editic	on. 2011

		NA	RAYANA E	NGINEERING (COLLEGE	:GUDU	R	
				HEAT TRANS	FER		NECR BT	ECHR21
Semester	Ho	urs/ V	Veek	Totalhrs	Credit	-	MaxMarks	
	L	Т	Р	-	С	CIE	SEE	TOTAL
V	3	0	0	48	3	40	60	100
Ι								
			(COURSECONTE	NT			
MODULE-1			BASIC MO	DES OF HEAT	FRANSFE	R 1	10 H	
			AND COND	UCTION HEAT	TRANSFI	ER		
Basic modes	of heat t	transf	er- rate equa	tions- generalized	heat cond	duction	equation -	steady state heat
conduction solu	ution for	r plai	n and comp	osite slabs - cyl	inders - ci	ritical th	nickness of	insulation-heat
conduction the	ough fir	ns of	uniform cross	s section- fin effe	ectiveness	and effic	ciency. Uns	steady State Heat
Transfer Condu	uction- T	ransi	ent heaconduc	tion- lumped syste	em analysis	and use	of Heisler	charts.
MODULE-2			CONVECT	ION HEAT TRA	NSFER	1	10H	
Basic concepts	of conv	rection	n-heat transfe	r coefficients - ty	pes of con	vection -	- forced co	nvection and free
convection For	ced conv	vectio	n in external t	flow_concepts of	hvdrodvnai	nic and	thermal bo	indary layers- use
of empirica c	orrelatio	ns fo	r flow over	nlates and cylir	iders Flui	d frictio	n – heat	transfer analogy
approximate s	olution t	no lar	ninar bounda	ry laver equation	for extended for the second	rnal floy	w Internal	flow – Use of
empirical relat	ions for	conve	ective heat tra	nsfer in horizonta	l nine flow	inar 110	w. Interna	
MODULE-3		conve		FION HEAT TR	ANSFER		9H	
Radiation heat	transfer	· _ th	ermal radiatio	n = laws of rad	ation - Bl	ack and	Grav bodi	es _ shane
factor-radiation	nexchang	ge bet	ween surfaces	- Radiation shield	ls - Greenh	ouse effe	ect.	es shape
MODULE-4			HEAT BOILING	ΓEXCHANGER AND CONDENS	S, ATION	10) H	
Types of heat	exchang	gers- 1	parallel flow-	counter flow- cr	oss flow h	eat exch	angers- ov	erall heat transfer
coefficient-LM	ITD and	NTU	J methods- fo	ouling in heat ex	changers. I	Boiling a	and Conder	nsation: Different
regimes of b	oiling- 1	nuclea	te, transition	and film boilin	g – conde	nsation	- film wis	e and drop wise
condensation.	C							*
MODULE-5			Ν	IASS TRANSFE	R	09H		
Mass Transfer:	: Conserv	vatior	laws and co	nstitutive equation	ns - Fick's	law of c	liffusion, is	sothermal equi-
mass -Equimo	lal diffus	ion	diffusion of g	gases and liquids-	mass transf	er coeffi	cient.	•
				- A			Total h	ours: 48H

1. P.K. Nag, "Heat Transfer", 3rd edition, Tata McGraw-Hill, 2011.

2. S.P. Sukhatme, "A Textbook of Heat Transfer", Universities Press, TMH publications 2005

Reference Book(s):

1. J.P.Holman, "Heat Transfer", 9th edition, Tata McGraw-Hill,2008.

2. Cengel. A.Yunus, "Heat Transfer", A Practical Approach, 4th edition, Tata McGrawHill, 2007.

3. Lienhard and Lienhard, "A Heat and Mass Transfer", Cambridge Press, 2011.

4. C.P. Kothandaraman and S. Subramanyan, "Heat and Mass Transfer databook", New Age Publications, 2014

	Ν	NARAYAN	NA ENGIN	EERING CO	DLLEGE:	GUDUR		
		Comp	uter Aided	Manufacturi	ng Lab		NECR B	TECH R21
Semester	Hours/ Week			Total	Credits	Max	x Marks	
	L	Т	Р	hrs	С	CIE	SEE	TOTAL
VI	0	0	3	48	1.5	40	60	100
			COUF	RSECONTEN	T			
			T	ASK-1 [4 Hrs]			
		Write a p	rogram for	translation, sc	aling, and i	otation.		
			TA	SK-2 [4 Hrs]			
	V	Write prog	am for gen	erating spline	Bezier and	B-spline.		
			TA	SK-3 [3Hrs]				
	Wr	ite a progr	am for swe	ep surfaces an	d surface o	f revolution	1.	
			TA	ASK-4 [3 Hrs]			
		Creat	e wirefram	ne, surface, and	l solid mod	lels.		
			T	ASK-5 [3Hrs]			
		Introduct	ion to CNC	C Machines and	d G-Code,	M-Code		
			T	ASK-6 [4 Hrs	5] .			
	CNC part p	rogrammii	ng for operation	ations like turn	ing, step tu	urning, tape	er turning,	
				threading	[rs]			
		CNC pro	ogram for p	olane milling, o	lrilling ope	rations		
			Г	ASK-8 [4 H	·s]			
	Generation of	f CNC part	programm	ing with CAN	[packages	for a given	3D model	s
		×	<u> </u>		rs]	U		
		Develop	ment of A	PT programmi	ng for 2D	objects		
			<u>т</u>		n a]			
	De		I for Dohor	ASK-10 [4 H	rsj	nuova nath		
	Pro	ogramming				nuous path	•	
			addi 110	NAL EXPER				
				TASK-11 [4]	Hrs			
Write the	manual part prog	gram to the	given dim	ensions and ex interpolation	ecute in C	NC Milling	g for linear	and circular
			T	ASK-12 [4Hi	:s]			
w	vrite the manual r	art progra	m to the giv	ven dimension	s and execu	ite in CNC	Milling fo	or drilling
••	rice the manual p	art progra	in to the St					

1. Mikell.P.Groover "Automation, Production Systems, and Computer Integrated Manufacturing", Prentice Hall of India, 2008.

2. Radhakrishnan P, Subramanian S.and Raju V., "CAD/CAM/CIM", 2nd Edition, New Age International (P) Ltd, New Delhi, 2000.

Reference Book(s):

- 1. Kant Vajpayee S, "Principles of Computer Integrated Manufacturing", Prentice HallIndia, 2003.
- 2. Rao. P, N Tewari &T.K. Kundra, "Computer Aided Manufacturing", Tata McGrawHill Publishing Company, 2000.

	1	NARAYAN	IAENGIN	EERINGC	OLLEGE	:GUDUR		
			HEAT	TRANSFE	R LAB			NECR BTECH R21
Semester	Hours/Wee	k		Totalh	Credit	MaxMarks		
	L	Т	Р	rs	С	CIE	SEE	TOTAL
VI	0	0	3	48	1.5	40	60	100
			COU	RSECONT	ENT		•	
			TA	SK-1 [4 Hrs	5]			
	Determine the	e overall hea	at transfer of	coefficient a	cross the v	vidth of con	nposite wa	all
			ТА	SK-2 [4 H1	s			
		Determin	e the therm	al conducti	vity of a me	etal rod		
		Determin		SK-3 [4 Hr	s]	ctul 10u.		
Determine t	he thermal con	ductivity of	f insulating	g powder ma	terial throu	igh concent	tric sphere	e apparatus
		•	TA	SK-4 [4 Hr	s]	0	•	
Determi	ine the therma	al conducti	vity of ins	ulating ma	terial throu	ugh lagged	pipe app	aratus
			TA	SK-5 [4 Hr	s]			
	Determi	ne the effic	iency of a	pin fin in na	tural and f	orced conve	ection.	
-			TA	SK-6 [4 Hr	<u>s]</u>			
D	etermine the he	eat transfer	coefficient	for a vertic	al cylinder	in natural c	convectior	1
			ТА	SK-7 [4 Hr	s			
Det	ermine the hea	t transfer c	oefficient i	n forced con	nvection of	air in a hor	izontal tu	be
			ТА	SK-8 [4 Hr	s]			
Dete	ermine the heat	t transfer co	oefficients	on film and	drop wise	condensatio	on apparat	us.
			ТА	SK-9 [4 Hr	s]			
	Determine	the effecti	veness of a	parallel and	d counter fl	ow heat ex	changer.	
			TAS	5K-10 [4 H	rs]		-	
	Study the	pool boilin	g phenome	non and dif	ferent regir	nes of pool	boiling.	
		<u> </u>	Additio	nal Experi	ments		<u> </u>	
			TAS	SK-11 [2 H	rs]			
			Experime	ent on pool	boiling			
			TAS	SK-12[2 Hi	·s]			
		Determin	ne the emis	sivity of the	test plate	surface		
			TAS	SK-13[2 Hi	<u>s]</u>			
		Exper	iment on S	tefan-Boltzi	nann appai	ratus		
			TAS	SK-14 [2 H	rs]			
	Determi	ine the heat	transfer ra	te coefficie	nt in fluidiz	zed bed app	aratus	

1. P.K. Nag, "Heat Transfer", 3rd edition, Tata McGraw-Hill, 2011.

2. S.P. Sukhatme, "A Textbook of Heat Transfer", Universities Press, TMH publications 2005 **ReferenceBook(s):**

1. J.P.Holman, "Heat Transfer", 9th edition, Tata McGraw-Hill,2008.

2. Cengel. A.Yunus, "Heat Transfer", A Practical Approach, 4th edition, Tata McGrawHill, 2007.

3. Lienhard and Lienhard, "A Heat and Mass Transfer", Cambridge Press, 2011.

4. C.P. Kothandaraman and S. Subrahmanyam, "Heat and Mass Transfer databook", New Age Publications, 2014

VII - SEMESTER

S.No	BOS Subjects of Departmentof Mechanical Engineering	Sem/Branch	Category
1.	Design of Transmission Systems	VII SEM	PC
2.	Metrology & Measurements	VII SEM	PC
3.	Metrology & Measurements Lab	VII SEM	PC
4.	Software Tools Lab	VII SEM	PC

		NARA	YANAENGI	NEERIN	GCOLLEGI	E:GUDUH	R	
		DESIGN	OF TRANS	MISSIO	N SYSTEMS		NECR B'	TECH R21
Semester	Hours/ W	Veek	Total hrs	Credit	s Max Mark	(S		
	L T	Р		С	CIE	SEE	TC	DTAL
VI	3 0	0	48	3	40	60	10	0
	<u> </u>	· ·	COURSE	CONTE	NT			
MODULE- I			DESIGN O	F FLEX	IBLE ELEN	IENTS		10 Hrs
Design of Flat	belts and	d pulleys -	— Selection of	of V belt	s and pulleys	— Selec	tion of h	oisting wire ropes
andpulleys —	Design of	f Transmis	sion chains ar	nd Sprock	tets			
MODULE-II		SPUR GI	EARS AND H	IELICA	L GEARS			9 Hrs
Speed ratios an Factor of safet wear considera forces for helio	nd numbe y — Gea ations — cal gears	r of teeth- r materials Pressure	Force analysis s — Design o angle in the 1	s -Tooth s f straight normal a	stresses — Dy tooth spur & nd transverse	ynamic eff helical g plane- Ec	ects — F gears base quivalent	Fatigue strength — ed on strength and number of teeth-
MODULE-III			BEVEI	LAND V	VORM GEA	RS		10 Hrs
the dimensions capacity, mate helical:Termin MODULE-IV Geometric pro gear box — D Speed reducer.	of pair rials-forc ology-hel gression esign of Variable	of straight es and st lix angles- 	t bevel gears. resses, efficie Estimating the rd step ratio – ed gear box fo r box, Fluid C	Worm (ency, est e size of t GEAR — Ray di or machin Couplings	imating the he pair of cro BOXES agram, kinen he tool applic , Torque Con	and deme size of th ss helical natics layo ations — verters for	rits- term ne worm gears. put -Desi Constant automot	10Hrs gear binding mesh gn of sliding mesh mesh gear box — ive applications.
MODULE-V		1	CUUT	CHES		' C		OHrs
Design of Electromagnet	plate c	lutches s. Band an	–axial cluto d Block brake	ches-cone s — exte	clutches-i rnal shoe bral	nternal (kes — Inte	expandin ernal expa	g rim clutches- anding shoe brake.
TEXT BOOKS 1. Bhanda 2. Joseph S Design' 3. Prabhu.	ri V, "Des Shigley, C ', 8th Edit T.J., "De	sign of Ma Charles Mi ion, Tata sign of Tra	ichine Elemen schke, Richar McGraw-Hill, ansmission Ele	ts", 3rd H d Budyna 2008. ements",	Edition, Tata I as and Keith N Mani Offset,	McGraw-H Nisbett "M Chennai, 2	Hill Book lechanica 2000	Co, 2010. l Engineering
REFERENCES 1. Sundararaja N 2. Gitin Maitra	S: Moorthy T	. V, Shani	mugam .N, "N	Iachine I	Design", Anur	adha Publ	ications,	Chennai, 2003.

2. Gitin Maitra, L. Prasad "Handbook of Mechanical Design", 2nd Edition, Tata McGraw-Hill, 2001.
 3. C.S.Sharma, Kamlesh Purohit, "Design of Machine Elements", Prentice Hall of India, Pvt. Ltd., 2003.

		l	NARAYANA	ENGINEERING	COLLEG	E :GUD	UR	
			METRO	LOGY AND MEAS		ГS	NECR BTE	CHR21
G	T	x / x x	1	m / 11	C 1			
Semester	L.	lours/ We	ek D	Total hrs	Credit	CIE	Max Marks	TOTAL
	- -	1	P	40	2	CIE 40	SEE	101AL
)	0		48 UDSECONTENT	3	40	60	100
			to	UKSECUNIENI				
MODULE-1			LINEAR&	à ANGULAR ME	ASUREMI	ENT		10 H
Introduction	to N	Metrology	; Need for	high precision me	asurements	s; Termi	nologies in	Measurement-
Precision, ac	curac	y sensitiv	vity, calibratio	n. Errors in Measu	rement, typ	es of erre	ors, Abbe's P	rinciple. Basic
standards of	lengt	h-Line sta	andards End s	tandards, Wavelen	gth standard	ds; Vario	us Shop floor	r standards.
Linear Meas	urem	ent – Slij	p gauges, wri	nging, grades; Sur	face plate;	Dial indi	icators; Heig	ht gauges, and
Venire calip	ers C	Comparate	ors- mechanic	cal, electrical, opt	cal, and p	neumatic	. Angular M	Ieasurement –
Bevel protra	ctor;	Sine Bar,	principleand	use of sine bar, sin	e center; Ar	ngle gaug	ges.	
Sprit level; A	Angle	Dekkor;	Clinometers.					
MODULE-2			LIMITS,	FITS AND TOLE	RANCES			10H
hole system. Gauge desig allowance. Optical Mea Principle of Interferomete	Limi n - 7 nsurin Inte ers –	nce, and t Gauges Faylor's g Instrur rference. NPL flatr	eviation (as – GO and No principle of g nents: - Bene Interference ness interferon	per BIS).Simple p O GO gauges; type gauging; Gauge to efits of using light band using optic meter, Pitter-NPL g	s of limit g lerance, di nt waves a al flat, ap auge interfe	auges. sposition s standa pplication	e and allowa of gauge to rds; Monoch in surface	nce, shaft and olerance, wear promatic light; measurement.
MODULE-3			MEASURE	MENT OF SURFA	CE TEXT	URE		09H
Measurement surface traces Methods of r surface roug evaluation 1 interferomete	t of s, pea neasu hness ength ers. A	surface to kto valley uring surfa measur n. Interfe utocollim	exture – Mea y height, R.M. ace roughness ement – asse rence methomator, principl	aning of surface t S. value, Centre L – Stylus probe, To essment length, ro d for measuring e and use of autoco	exture, rou ne Average omlinson su oughness w surface ro llimator.	ghness, e and Ra rface me vidth cut ughness	and wavines value, Rt, Rz ter, Talysurf -off, samplin – using op	s; Analysis of , etc. ; Terms used in ng length, and ptical flat and
MODULE-4			r	FRANSDUCERS				10 H
Introduction methods of – Sensor-Tra Active and H –Accuracy, H Hysteresis, a Measuring H Classification – Principle a	to I measu insduc Passiv Precis and S ag, I n of tr applic	Mechanic urement; cer stage, ve transd sion, Repe Static cali Fidelity, ransducer sations ac	al Measurem Classification Signal-Condi ucers. Perforr eatability,Sens ibration. Dyna Dynamic errors. Motion and lyantages and	ent – significanc of measuring instr tioning stage, Read nance characteristi itivity, Reproc amic characteristics ror; Types of erro Dimension measu limitations	e of mech ument. Stag lout-Record cs of measu lucibility, D - different rs in measurement – LV	anical r ges in ge: ling stage uring dev Drift, order sy surement VDT	neasurement; neralized mea e; Types of in vices –Static Resolution, ystems and t . Transduce	Fundamental asuring system uput quantities; characteristics Threshold, heir response-, rs – Working,
MODULE-5			MECH	ANICAL MEASU	REMENT	1		09H

Torque Measurement – Dynamometers – Mechanical, Hydraulic, and Electrical. Vibration measurement – Vibrometers and Accelerometers – Basic principles and operation.

Temperature Measurement – Use of Thermal Expansion – Liquid-in-glass thermometers metallic strip pressure thermometers. Thermocouples – Principle, application laws for Thermocouples, Thermocouple materials and construction, measurement of Thermocouple EMF. Resistance Temperature Detectors (RTD); Thermistors; Pyrometers (Basic Principles).

Total hours 48H

Text Book(s):

- 1. Anand K Bewoor, Vinay A Kulkarni, Metrology & Measurement, McGraw-Hill, 2009
- 2. ErnestODublin ,DhaneshN.Manik, Measurement Systems Application and Design,McGraw-Hill,2004
- 3. GalyerJ.F.W., SchotboltC.R., MetrologyforEngineers, ELBS, 1990
- 4. Thomas G. Beckwith, John H. L., Roy D. M., Mechanical Measurements, 6/E ,PearsonPrenticeHall, 2007

ReferenceBook(s):

- 1. ASME, Handbook of Industrial Metrology, 1998
- 2. HumeK.J.,EngineeringMetrology,Macdonald &Co.Ltd.,1990
- 3. J.P.Holman, Experimental Methods for Engineers, McGraw-Hill, 2007
- 4. SharpK.W.B., PracticalEngineeringMetrology, SirIsaacPitman&Sons Ltd., 1958

		NARAY	ANA ENG	INEERIN	G COLLE	GE:GUDI	JR	
		METI	ROLOGY	& MEASU	REMENT	IS LAB		NECR BTECH R21
Semester	Hours/Wee	k	•	Total	Credit	Max Marl	KS	-
	L	Т	Р	hrs	C	CIE	SEE	TOTAL
VII	0	0	3	48	1.5	40	60	100
				URSE CO	NIENI			
		PART-A	[Metrolog	y Lab]				
]	ГА SK-1 [4	Hrs]			
	Measurem	ent of leng	ths, heights	s, diameters	by vernier	calipers, n	nicrometers	etc
				ГА SK-2 [4	Hrs]			
	Measu	urement of	bores by in	nternal micr	ometers an	d dial bore	indicators	
]	ГА SK-3 [3	Hrs]			
		Μ	lachine tool	l alignment	test on the	lathe.		
]	ГА SK-4 [4	Hrs]			
		M1-	·····					
		Mach	ine tool all	gnment test	on arilling	g machine		
]	FASK-5 [4	Hrs]			
		Maah	ina taal ali	anmont toot	on milling	machina		
		Mach	me toor ang	ginnent test	on mining	, machine.		
			PART B	[Instrume	ntation La	ıb]		
]	ГА SK-6 [4	Hrs]			
			Calibra	tion of pres	sure gauge	2		
]	ГАЅК-7 [4	Hrs]	-		
		0 111	6.4	1 6 4				
		Calibratio	on of transc	lucer for ter	nperature	measureme	nt.	
]	ľASK-8 [4	Hrs]			
	Study a	nd calibrati	on of LVD	T transduce	er for displ	acement me	easurement.	
			r	TASK-9[3]	Hrs]			
			Calib	ration of str	ain gauge			
				ASK-10[3	Hrs]			
					~]			
			Colibr	ation of the	mocounts			
					FRIMEN	ITS		
			T	ASK-11 [4	Hrs]			
		Study of	f tool make	ers microsco	pe and its	application	s	
			T	ASK-12 [4	Hrs]	II		
					"			

Use of spirit level in finding the straightness of a bed and flatness of a surface

TASK-13[4 Hrs]

Calibration of capacitive transducer

TASK-14[3Hrs]

Study and calibration of a rotameter

TextBook(s):

- 1. AnandK Bewoor, VinayA Kulkarni, Metrology&Measurement, McGraw-Hill, 2009
- 2. ErnestO.Doebelin,DhaneshN.Manik,MeasurementSystemsApplicationandDesign,M cGraw-Hill,2004
- 3. GalyerJ.F.W., SchotboltC.R., Metrologyfor Engineers, ELBS, 1990
- 4. Thomas G. Beckwith, John H. L., Roy D. M., Mechanical Measurements, 6/E, PearsonPrenticeHall, 2007

ReferenceBook(s):

- 1. 1 ASME, Handbook of Industrial Metrology, 1998
- 2. HumeK.J.,EngineeringMetrology,Macdonald &Co.Ltd.,1990
- 3. J.P.Holman, Experimental Methods for Engineers, McGraw-Hill, 2007
- 4. SharpK.W.B., PracticalEngineeringMetrology, SirIsaacPitman&Sons Ltd., 1958

		NARAYA	ANA ENG	INEERING	G COLLE	GE:: GUDI	U R	
		SO	FTWARE	TOOLS L	AB		NECR I	BTECHR21
Semester	Hours/Wee	k		Total	Credit	Max Mark	s	
	L	Т	Р	hrs	C	CIE	SEE	TOTAL
VII	0	0	3	48	1.5	40	60	100
			CC	OURSE CO	NTENT			
				Task-1 [4]	Hrs]			
		Anal	lysis Of A	Rectangular	Plate Wit	h A Hole		
				Task-2 [4]	Hrs]			
		. Ana	alysis Of A	Truss Men	nber Under	r Loading		
			<u> </u>	Task-3 [4]	Hrs]			
			Stati	c Analysis	Of Beam			
				Task-4 [4]	Hrs]			
		Analysis	s Of A Squ	are Plate Co	onsidering	Conduction		
				Task-5 [4]	Hrs]			
	A	Analysis Of	f A Fin Co	nsidering Co	onduction .	And Convec	ction	
				Task-6 [4]	Hrs]			
		Write	A Code Fo	or Agricultu	ral Drone	By Using Py	ython	
				Task-7 [4]	Hrs]			
	V	Vrite A Co	de For Dro	one In Safety	y Applicati	on Using Py	thon	
				Task-8 [4]	Hrs]			
	Writ	e A Code I	For Robot 1	for medical	application	ns By Using	Python	
				Task-9 [4]	Hrs]			
		De	emonstratio	on On 3d Pri	nting Tech	nology		
			7	Task-10 [4	Hrs]			
	Ν	Aaking Of	Simple Co	mponents	Using 3d P	rinting Mac	hine	
			Add	itional Exp	eriments			
			,	Task -11[4	Hrs]			

Thermal Stress And Heat Transfer Analysis Of Plate.

Task -12[4 Hrs]

Model Analysis Of Beams.

TEXTBOOKS:

- 1. A first course in the Finite Element Method Logan, D. L Cengage Learning 6th Edition 2016
- 2. A Hands-On, Project-Based Introduction to Programming by Eric Matthes 2019

REFERENCE BOOKS:

- 1. Finite Element Method in Engineering Rao, S. S Pergaman Int. Library of Science 5th Edition2010
- 2. Earning Python 5/Ed (Updated For 3.3 And 2.7) By Lutz M 2013

NARAYANA ENGINEERING COLLEGE :: GUDUR (AUTONOMOUS) (Aproved by AICTE & Affiliated to JNTU, Ananthapuram, An ISO 9001:2015 Certified Institution)

DEPARTMENT OF MECHANICAL ENGINEERING

LIST OF PROFESSIONAL ELECTIVES (NECR **BTECH (R21))**

ELECTIVETR ACK/GRO UP	Professional Elective-1	Professional Elective-2	Professional Elective-3	Professional Elective-4	Professional Elective-5
Design Engineering	Product Design &Development	Design of Material Handling Equipment	Finite Element Methods	Computational Fluid Dynamics	Geometric Dimension ing and Tolerance
Thermal Engineering	Gas turbines and Jet Propulsion	Power plant Engineering	Refrigeration & Air Conditioning	Hydraulic & Pneumatics Systems	Automobile Engineering
Production Engineering	Fundamentals of additive manufacturing	Modern Manufacturing Methods	Automation In Manufacturing	Surface Engineering	Manufacturing & Inspection Of Gears
Industrial Engineering	Management Science	Engineering Optimization	Industrial Engineering	Production & Operation Management	Industrial Management
CAD/CAM	Flexible Manufacturing Systems	Mechatronics	Intelligent Manufacturing Systems	Automation Robotics	Computer Aided Process Planning
Materials Engineering	Principles of Metal Extraction & Refining	Metallurgy	Composite Materials	Nano materials	Smart Materials

PROFESSIONAL ELECTIVE -1

PRODUCT DESIGN AND DEVELOPMENT NECR BTECH (R21) Semester Hours/ Week Total hrs Credits Max Marks L T P C CIE SEE TOTAL V 3 0 48 3 40 60 100 COURSE CONTENT MODULE-I INTRODUCTION 10 Hrs Need for Integrated Product and Process Development (IPPD) -Strategic importance of Product development - integration of customer, designer, material supplier and process planner, Competitor and customer - behavior analysis. Understanding customer promoting customer understanding-involve customer in development and managing requirements - Organization process management and improvement. MODULE-II CONCEPT GENERATION, SELECTION AND TESTING P Hrs Plan and establish product specifications. Task - Structured approaches - clarification - search-externally and internally-Explore systematically - reflect on the solutions and processes - concept selection - methodology - benefits. Implications - Product change - variety - component standardization - product performance - manufacturability - Concept Testing Methodologies. MODULE-III PRODUCT ARCHITECTURE 10 Hrs MODULE-HI PRODUCT ARCHITECTURE 10 Hrs Integrate process design - Managing costs - Robust design -Modular Design-Integrated design -Integrating approaches - conceptu	
Semester Hours/Week Total hrs Credits Max Marks L T P C CIE SEE TOTAL V 3 0 48 3 40 60 100 COURSE CONTENT MODULE-1 INTRODUCTION [10 Hrs Need for Integrated Product and Process Development (IPPD) -Strategic importance of Product development - integration of customer, designer, material supplier and process planner, Competitor and customer - behavior analysis. Understanding customer-promoting customer understanding-involve customer in development and managing requirements - Organization process management and improvement. MODULE-II CONCEPT GENERATION, SELECTION AND TESTING 9 Hrs Plan and establish product specifications. Task - Structured approaches - clarification - search-externally and internally-Explore systematically - reflect on the solutions and processes - concept selection - methodology - benefits. Implications - Product Change - variety - component standardization - product performance - manufacturability - Concept Testing Methodologies. 10 Hrs Product development management - establishing the architecture - creation - clustering - geometric layout development - Fundamental and incidental interactions - related system level design issues - secondary systems - architecture of the chunks - creating detailed interface specifications-Portfolo Architecture. MODULE-III PNDUCTAICTINICLOESIGN <td< td=""></td<>	
L T P C CIE SEE TOTAL V 3 0 0 48 3 40 60 100 COURSE CONTENT MODULE-1 INTRODUCTION 10 Hrs Need for Integrated Product and Process Development (IPPD) -Strategic importance of Product development - integration of customer, designer, material supplier and process planner, Competitor and vision customer in development and managing requirements - Organization process management and improvement. MODULE-II CONCEPT GENERATION, SELECTION AND TESTING 9 Hrs Plan and establish product specifications. Task - Structured approaches - clarification - search-externally and internally-Explore systematically - reflect on the solutions and processes - concept selection - methodology - benefits. Implications - Product change - variety - component standardization - product performance - manufacturability - Concept Testing Methodologies. 10 Hrs Product development management - establishing the architecture - creation - clustering - geometric layout development - Fundamental and incidental interactions - related system level design issues - secondary systems -architecture of the chunks - creating detailed interface specifications-Portfolio Architecture. MODULE-IV INDUSTRIAL DESIGN 9 Hrs Integrate process design - Managing costs - Robust design -Modular Design-Integrated design -Integrating CAE, CAD, CAM tools - Simulating product per	
V 3 0 48 40 60 100 COURSE CONTENT MODULE-I INTRODUCTION 10 Hrs Need for Integrated Product and Process Development (IPPD) -Strategic importance of Product development - integration of customer, designer, material supplier and process planner, Competitor and customer - behavior analysis. Understanding customer-promoting customer understanding-involve customer in development and managing requirements - Organization process management and improvement. MODULE-II CONCEPT GENERATION, SELECTION AND TESTING Hrs Plan and establish product specifications. Task - Structured approaches - clarification - search-externally and internally-Explore systematically - reflect on the solutions and processes - concept selection - methodology - benefits. Implications - Product change - variety - component standardization - product performance - manufacturability - Concept Testing Methodologies. 10 Hrs MODULE-III PRODUCT ARCHITECTURE 10 Hrs Product development management - establishing the architecture - creation - clustering - geometric layout development - Fundamental and incidental interactions - related system level design issues - secondary systems - architecture of the chunks - creating detailed interface specifications-Portfolio Architecture. MODULE-IV INDUSTRIAL DESIGN P Hrs Integrate process design - Managing costs - Robust design -Integrated design -Integrating CAE, CAD, CAM tools – Simulating product performance and manuf	
MODULE-I INTRODUCTION I0 Hrs Need for Integrated Product and Process Development (IPPD) -Strategic importance of Product development - integration of customer, designer, material supplier and process planner, Competitor and customer - behavior analysis. Understanding customer-promoting customer understanding-involve customer in development and managing requirements - Organization process management and improvement. MODULE-II CONCEPT GENERATION, SELECTION AND TESTING Ø Hrs Plan and establish product specifications. Task - Structured approaches - clarification - search-externally and internally-Explore systematically - reflect on the solutions and processes - concept selection - product performance - manufacturability – Concept Testing Methodologies. MODULE-II PRODUCT ARCHITECTURE I0 Hrs Product development management - establishing the architecture - creation - clustering - geometric layout development - Fundamental and incidental interactions - related system level design issues - secondary systems - architecture of the chunks - creating detailed interface specifications-Portfolio Architecture. MODULE-IV INDUSTRIAL DESIGN Ø Hrs Integrate process design - Managing costs - Robust design -Modular Design-Integrated design - Integrating CAE, CAD, CAM tools - Simulating product performance and manufacturing processes electronically - Need for industrial design-impact - design process - investigation of customer needs - conceptualization - refinement - management of the industrial design process - technology driven products - user - driven products - assessing the quality of industrial design process - technology driven products - user - driven product	
MODULE-1 INTRODUCTION 10 Hrs Need for Integrated Product and Process Development (IPPD) -Strategic importance of Product development - integration of customer, designer, material supplier and process planner, Competitor and customer - behavior analysis. Understanding customer-promoting customer understanding-involve customer in development and managing requirements - Organization process management and improvement. MODULE-II CONCEPT GENERATION, SELECTION AND TESTING 9 Hrs Plan and establish product specifications. Task - Structured approaches - clarification - search-externally and internally-Explore systematically - reflect on the solutions and processes - concept selection - methodology - benefits. Implications - Product change - variety - component standardization - product performance - manufacturability - Concept Testing Methodologies. MODULE-III PRODUCT ARCHITECTURE 10 Hrs Product development management - establishing the architecture - creation - clustering - geometric layout development - Fundamental and incidental interactions - related system level design issues - secondary systems - architecture of the chunks - creating detailed interface specifications-Portfolio Architecture. MODULE-IV INDUSTRIAL DESIGN PHrs Integrate process design - Managing costs - Robust design -Modular Design-Integrated design -Integrating CAE, CAD, CAM tools - Simulating product performance and manufacturing processe electronically - Need for industrial design impact - design process - investigation of customer needs - conceptualization - refinement - management of the industrial design. PHrs	
Need for Integrated Product and Process Development (IPPD) -Strategic importance of Product development - integration of customer, designer, material supplier and process planner, Competitor and customer in development and managing requirements - Organization process management and improvement. MODULE-II CONCEPT GENERATION, SELECTION AND TESTING 9 Hrs Plan and establish product specifications. Task - Structured approaches - clarification - search-externally and internally-Explore systematically - reflect on the solutions and processes - concept selection - methodology - benefits. Implications - Product change - variety - component standardization - product performance - manufacturability - Concept Testing Methodologies. IO Hrs Product development management - establishing the architecture - creation - clustering - geometric layout development - Fundamental and incidental interactions - related system level design issues - secondary systems - architecture of the chunks - creating detailed interface specifications-Portfolio Architecture. MODULE-IV INDUSTRIAL DESIGN PHrs Integrate process design - Managing costs - Robust design -Modular Design-Integrated design - Integrating of custorial design inpact - design process - investigation of customer needs - conceptualization - refinement - management of the industrial design. PHrs MODULE-IV IDESIGN FOR MANUFACTURING AND PRODUCT IO Hrs Integrate procest assessing the quality of industrial design. PHrs Definition - Estimation of Manufacturing costs - Principles of prototyping - Planning for prototypes - Economic Analysis - Understanding and	
development - integration of customer, designer, material supplier and process planner, Competitor and customer - behavior analysis. Understanding customer-promoting customer understanding-involve customer in development and managing requirements - Organization process management and improvement. MODULE-II CONCEPT GENERATION, SELECTION AND TESTING 9 Hrs Plan and establish product specifications. Task - Structured approaches - clarification - search-externally and internally-Explore systematically - reflect on the solutions and processes - concept selection - methodology - benefits. Implications - Product change - variety - component standardization - product performance - manufacturability - Concept Testing Methodologies. 10 Hrs Product development management - establishing the architecture - creation - clustering - geometric layout development - Fundamental and incidental interactions - related system level design issues - secondary systems -architecture of the chunks - creating detailed interface specifications-Portfolio Architecture. MODULE-IV INDUSTRIAL DESIGN Hrs Integrate process design - Managing costs - Robust design -Modular Design-Integrated design -Integrating CAE, CAD, CAM tools - Simulating product performance and manufacturing processes electronically - driven products - assessing the quality of industrial design. 10 Hrs MODULE-V DESIGN FOR MANUFACTURING AND PRODUCT 10 Hrs Definition - Estimation of Manufacturing cost- Principles of prototyping - Planning for prototypes - Economic Analysis - Understanding and representing tasks-baseline project planning for prototypes - Economic Analysis - Understanding and represen	
customer - behavior analysis. Understanding customer-promoting customer understanding-involve customer in development and managing requirements - Organization process management and improvement. MODULE-II CONCEPT GENERATION, SELECTION AND TESTING P Hrs Plan and establish product specifications. Task - Structured approaches - clarification - search-externally and internally-Explore systematically - reflect on the solutions and processes - concept selection - methodology - benefits. Implications - Product change - variety - component standardization - product performance - manufacturability - Concept Testing Methodologies. MODULE-III PRODUCT ARCHITECTURE 10 Hrs Product development management - establishing the architecture - creation - clustering - geometric layout development - Fundamental and incidental interactions - related system level design issues - secondary systems - architecture of the chunks - creating detailed interface specifications.Portfolio Architecture. MODULE-IV INDUSTRIAL DESIGN P Hrs Integrate process design - Managing costs - Robust design -Modular Design-Integrated design -Integrating CAE, CAD, CAM tools - Simulating product performance and manufacturing processes electronically - Need for industrial design-impact - design process - investigation of customer needs - conceptualization - refinement - management of the industrial design process - technology driven products - user - driven products - assessing the quality of industrial design. 10 Hrs DESIGN FOR MANUFACTURING AND PRODUCT 10 Hrs Definition - Estimation of Manufacturing cost-reducing the component costs and assembly costs - Minimize sy	
customer in development and managing requirements - Organization process management and improvement. ODULE-II CONCEPT GENERATION, SELECTION AND TESTING Hrs Plan and establish product specifications. Task - Structured approaches - clarification - search-externally and internally-Explore systematically - reflect on the solutions and processes - concept selection - methodology - benefits. Implications - Product change - variety - component standardization - product performance - manufacturability - Concept Testing Methodologies. In Hrs MODULE-III PRODUCT ARCHITECTURE 10 Hrs Product development management - establishing the architecture - creation - clustering - geometric layout development - Fundamental and incidental interactions - related system level design issues - secondary systems - architecture of the chunks - creating detailed interface specifications-Portfolio Architecture. MODULE-IV INDUSTRIAL DESIGN P Hrs Integrate process design - Managing costs - Robust design -Modular Design-Integrated design -Integrating CAE, CAD, CAM tools - Simulating product performance and manufacturing processes electronically - Need for industrial design-impact - design process - investigation of customer needs - conceptualization - refinement - management of the industrial design. Io Hrs MODULE-V DESIGN FOR MANUFACTURING AND PRODUCT Io Hrs Definition - Estimation of Manufacturing cost-reducing the component costs and assembly costs - Minimize system complexity - Prototype basics - Principles of prototyping - Planning for prototypes - Economic Analysis - Understanding and representing tasks-baseline project planning - a	
Improvement, MODULE-II CONCEPT GENERATION, SELECTION AND TESTING P Hrs Plan and establish product specifications. Task - Structured approaches - clarification - search-externally and internally-Explore systematically - reflect on the solutions and processes - concept selection - methodology - benefits. Implications - Product change - variety - component standardization - product performance - manufacturability - Concept Testing Methodologies. I0 Hrs Product Performance - manufacturability - Concept Testing Methodologies. I0 Hrs Product development management - establishing the architecture - creation - clustering - geometric layout development - Fundamental and incidental interactions - related system level design issues - secondary systems - architecture of the chunks - creating detailed interface specifications-Portfolio Architecture. MODULE-IV INDUSTRIAL DESIGN P Hrs Integrate process design - Managing costs - Robust design -Modular Design-Integrated design -Integrating CAE, CAD, CAM tools - Simulating product performance and manufacturing processes electronically - Need for industrial design process - investigation of customer needs - conceptualization - refinement - management of the industrial design. I0 Hrs MODULE-V DESIGN FOR MANUFACTURING AND PRODUCT design - assessing the quality of industrial design. I0 Hrs MODULE-V DESIGN FOR MANUFACTURING AND PRODUCT design for prototypes - Economic Analysis - Understanding and representing tasks-baseline project planning - accelerating the project-project execution. Total Hours 48 Hrs <td colsp<="" td=""></td>	
MODULE-II CONCEPT GENERATION, SELECTION AND TESTING P Hrs Plan and establish product specifications. Task - Structured approaches - clarification - search-externally and internally-Explore systematically - reflect on the solutions and processes - concept selection - methodology - benefits. Implications - Product change - variety - component standardization - product performance - manufacturability - Concept Testing Methodologies. MODULE-III PRODUCT ARCHITECTURE [10 Hrs Product development management - establishing the architecture - creation - clustering - geometric layout development - Fundamental and incidental interactions - related system level design issues - secondary systems - architecture of the chunks - creating detailed interface specifications-Portfolio Architecture. MODULE-IV INDUSTRIAL DESIGN P Hrs Integrate process design - Managing costs - Robust design - Modular Design-Integrated design - Integrating CAE, CAD, CAM tools – Simulating product performance and manufacturing processes electronically - Need for industrial design-impact – design process - investigation of customer needs - conceptualization - refinement - management of the industrial design. In Hrs MODULE-V DESIGN FOR MANUFACTURING AND PRODUCT 10 Hrs MODULE-V DESIGN FOR MANUFACTURING AND PRODUCT 10 Hrs mimize system complexity - Prototype basics - Principles of prototyping - Planning for prototypes - Economic Analysis - Understanding and representing tasks-baseline project planning - accelerating the project-project execution. Total Hours 48 Hrs	
Plan and establish product specifications. Task - Structured approaches - clarification - search-externally and internally-Explore systematically - reflect on the solutions and processes - concept selection - methodology - benefits. Implications - Product change - variety - component standardization - product performance - manufacturability - Concept Testing Methodologies. MODULE-III PRODUCT ARCHITECTURE 10 Hrs Product development management - establishing the architecture - creation - clustering - geometric layout development - Fundamental and incidental interactions - related system level design issues - secondary systems - architecture of the chunks - creating detailed interface specifications-Portfolio Architecture. MODULE-IV INDUSTRIAL DESIGN 9 Hrs Integrate process design - Managing costs - Robust design -Modular Design-Integrated design -Integrating CAE, CAD, CAM tools - Simulating product performance and manufacturing processes electronically - Need for industrial design-impact - design process - investigation of customer needs - conceptualization - effinement - management of the industrial design. 10 Hrs MODULE-V DESIGN FOR MANUFACTURING AND PRODUCT 10 Hrs Definition - Estimation of Manufacturing cost-reducing the component costs and assembly costs - Minimize system complexity - Prototype basics - Principles of prototyping - Planning for prototypes - Economic Analysis - Understanding and representing tasks-baseline project planning - accelerating the project-project execution. Total Hours 48 Hrs	
and internally-Explore systematically - reflect on the solutions and processes - concept selection - methodology - benefits. Implications - Product change - variety - component standardization - product performance - manufacturability – Concept Testing Methodologies. MODULE-III PRODUCT ARCHITECTURE [10 Hrs Product development management - establishing the architecture - creation - clustering - geometric layout development - Fundamental and incidental interactions - related system level design issues - secondary systems -architecture of the chunks - creating detailed interface specifications-Portfolio Architecture. MODULE-IV INDUSTRIAL DESIGN 9 Hrs Integrate process design - Managing costs - Robust design –Modular Design-Integrated design -Integrating CAE, CAD, CAM tools – Simulating product performance and manufacturing processes electronically - Need for industrial design-impact – design process - investigation of customer needs - conceptualization - refinement - management of the industrial design process - technology driven products - user – driven products - assessing the quality of industrial design. MODULE-V DESIGN FOR MANUFACTURING AND PRODUCT 10 Hrs Definition - Estimation of Manufacturing cost-reducing the component costs and assembly costs – Minimize system complexity - Prototype basics - Principles of prototyping - Planning for prototypes - Economic Analysis - Understanding and representing tasks-baseline project planning - accelerating the project-project execution. Total Hours 48 Hrs TEXT BOOK 1. Product Design and Development, Karl T.Ulrich and Steven D.Eppinger, McGraw –Hill InternationalEdns.1999 REFERENCES: 1. Concurrent Engr /Integrated Product Development Kempneth Crow DRM Associates	
methodology - benefits. Implications - Product change - variety - component standardization - product performance - manufacturability - Concept Testing Methodologies. I0 Hrs MODULE-III PRODUCT ARCHITECTURE 10 Hrs Product development management - establishing the architecture - creation - clustering - geometric layout development - Fundamental and incidental interactions - related system level design issues - secondary systems -architecture of the chunks - creating detailed interface specifications-Portfolio Architecture. MODULE-IV INDUSTRIAL DESIGN 9 Hrs Integrate process design - Managing costs - Robust design -Modular Design-Integrated design -Integrating CAE, CAD, CAM tools - Simulating product performance and manufacturing processes electronically - Need for industrial design-impact - design process - investigation of customer needs - conceptualization - refinement - management of the industrial design. I0 Hrs MODULE-V DESIGN FOR MANUFACTURING AND PRODUCT 10 Hrs Definition - Estimation of Manufacturing cost-reducing the component costs and assembly costs - Minimize system complexity - Prototype basics - Principles of prototyping - Planning for prototypes - Economic Analysis - Understanding and representing tasks-baseline project planning - accelerating the project-project execution. 48 Hrs TEXT BOOK 1. Product Design and Development, Karl T.Ulrich and Steven D.Eppinger, McGraw -Hill InternationalEdns.1999 REFERENCES: 1. Concurrent Energ (Integrated Product Development Kemneth Crow, DRM Associates 1. Concurrent Energ (I	
Product performance - manufacturability – Concept Testing Methodologies. MODULE-III PRODUCT ARCHITECTURE 10 Hrs Product development management - establishing the architecture - creation - clustering - geometric layout development - Fundamental and incidental interactions - related system level design issues - secondary systems - architecture of the chunks - creating detailed interface specifications-Portfolio Architecture. MODULE-IV INDUSTRIAL DESIGN 9 Hrs Integrate process design - Managing costs - Robust design –Modular Design-Integrated design -Integrating CAE, CAD, CAM tools – Simulating product performance and manufacturing processes electronically - Need for industrial design-impact – design process - investigation of customer needs - conceptualization - refinement - management of the industrial design. 10 Hrs MODULE-V DESIGN FOR MANUFACTURING AND PRODUCT 10 Hrs Definition - Estimation of Manufacturing cost-reducing the component costs and assembly costs – Minimize system complexity - Prototype basics - Principles of prototyping - Planning for prototypes - Economic Analysis - Understanding and representing tasks-baseline project planning - accelerating the project-project execution. Total Hours 48 Hrs TEXT BOOK 1. Product Development, Karl T.Ulrich and Steven D.Eppinger, McGraw –Hill InternationalEdns.1999 REFERENCES: 1 Concurrent Energ /Integrated Product Development, Kernneth Crow, DRM Associates	
MODULE-III PRODUCT ARCHITECTURE [10 Hrs Product development management - establishing the architecture - creation - clustering - geometric layout development - Fundamental and incidental interactions - related system level design issues - secondary systems - architecture of the chunks - creating detailed interface specifications-Portfolio Architecture. MODULE-IV INDUSTRIAL DESIGN 9 Hrs Integrate process design - Managing costs - Robust design -Modular Design-Integrated design -Integrating CAE, CAD, CAM tools – Simulating product performance and manufacturing processes electronically - Need for industrial design-impact – design process - investigation of customer needs - conceptualization - refinement - management of the industrial design. 10 Hrs MODULE-V DESIGN FOR MANUFACTURING AND PRODUCT 10 Hrs 10 Hrs Monufacturing cost-reducing the component costs and assembly costs – Minimize system complexity - Prototype basics - Principles of prototyping - Planning for prototypes - Economic Analysis - Understanding and representing tasks-baseline project planning - accelerating the project-project execution. Total Hours 48 Hrs TEXT BOOK 1. Product Design and Development, Karl T.Ulrich and Steven D.Eppinger, McGraw –Hill InternationalEdns.1999 REFERENCES: 1 Concurrent Engr /Integrated Product Development Kempneth Crow DRM Associates	
Product development management - establishing the architecture - creation - clustering - geometric layout development - Fundamental and incidental interactions - related system level design issues - secondary systems -architecture of the chunks - creating detailed interface specifications-Portfolio Architecture. MODULE-IV INDUSTRIAL DESIGN 9 Hrs Integrate process design - Managing costs - Robust design -Modular Design-Integrated design -Integrating CAE, CAD, CAM tools – Simulating product performance and manufacturing processes electronically - Need for industrial design-impact – design process - investigation of customer needs - conceptualization - refinement - management of the industrial design. 9 Hrs MODULE-V DESIGN FOR MANUFACTURING AND PRODUCT of the industrial design. 10 Hrs MODULE-V DESIGN FOR MANUFACTURING AND PRODUCT of the component costs and assembly costs - Minimize system complexity - Prototype basics - Principles of prototyping - Planning for prototypes - Economic Analysis - Understanding and representing tasks-baseline project planning - accelerating the project-project execution. Total Hours 48 Hrs TEXT BOOK 1. Product Design and Development, Karl T.Ulrich and Steven D.Eppinger, McGraw –Hill InternationalEdns.1999 REFERENCES: 1 Concurrent Energ /Integrated Product Development Kemneth Crow DRM Associates	
development - Fundamental and incidental interactions - related system level design issues - secondary systems - architecture of the chunks - creating detailed interface specifications-Portfolio Architecture. MODULE-IV INDUSTRIAL DESIGN 9 Hrs Integrate process design - Managing costs - Robust design –Modular Design-Integrated design -Integrating CAE, CAD, CAM tools – Simulating product performance and manufacturing processes electronically - Need for industrial design-impact – design process - investigation of customer needs - conceptualization - refinement - management of the industrial design process - technology driven products - user – driven products - assessing the quality of industrial design. 10 Hrs MODULE-V DESIGN FOR MANUFACTURING AND PRODUCT 10 Hrs 10 Hrs Definition - Estimation of Manufacturing cost-reducing the component costs and assembly costs – Minimize system complexity - Prototype basics - Principles of prototyping - Planning for prototypes - Economic Analysis - Understanding and representing tasks-baseline project planning - accelerating the project-project execution. Total Hours 48 Hrs TEXT BOOK 1. Product Design and Development, Karl T.Ulrich and Steven D.Eppinger, McGraw –Hill InternationalEdns.1999 REFERENCES: 1 Concurrent Engg /Integrated Product Development Kemneth Crow DRM Associates Product Development Kemneth Crow DRM Associates	
Systems -arcmetecture of the chunks - creating detailed interface specifications-Portiono Arcmetecture. MODULE-IV INDUSTRIAL DESIGN 9 Hrs Integrate process design - Managing costs - Robust design –Modular Design-Integrated design -Integrating CAE, CAD, CAM tools – Simulating product performance and manufacturing processes electronically - Need for industrial design-impact – design process - investigation of customer needs - conceptualization - refinement - management of the industrial design process - technology driven products - user – driven products - assessing the quality of industrial design. 10 Hrs MODULE-V DESIGN FOR MANUFACTURING AND PRODUCT DEVELOPMENT 10 Hrs Definition - Estimation of Manufacturing cost-reducing the component costs and assembly costs – Minimize system complexity - Prototype basics - Principles of prototyping - Planning for prototypes - Economic Analysis - Understanding and representing tasks-baseline project planning - accelerating the project-project execution. 48 Hrs TEXT BOOK 1. Product Design and Development, Karl T.Ulrich and Steven D.Eppinger, McGraw –Hill 11 InternationalEdns.1999 REFERENCES: 1 Concurrent Engg /Integrated Product Development Kempneth Crow DRM Associates	
MODULE-IV INDUSTRIAL DESIGN Hrs Integrate process design - Managing costs - Robust design -Modular Design-Integrated design -Integrating CAE, CAD, CAM tools – Simulating product performance and manufacturing processes electronically - Need for industrial design-impact – design process - investigation of customer needs - conceptualization - refinement - management of the industrial design process - technology driven products - user – driven products - assessing the quality of industrial design. Integrate Process - technology driven products - user – driven products - assessing the quality of industrial design. MODULE-V DESIGN FOR MANUFACTURING AND PRODUCT DEVELOPMENT 10 Hrs Definition - Estimation of Manufacturing cost-reducing the component costs and assembly costs – Minimize system complexity - Prototype basics - Principles of prototyping - Planning for prototypes - Economic Analysis - Understanding and representing tasks-baseline project planning - accelerating the project-project execution. 48 Hrs TEXT BOOK 1. Product Design and Development, Karl T.Ulrich and Steven D.Eppinger, McGraw –Hill InternationalEdns.1999 REFERENCES: 1 Concurrent Engr /Integrated Product Development Kemnneth Crow DRM Associates	
Integrate process design - Managing costs - Robust design –Modular Design-Integrated design -Integrating CAE, CAD, CAM tools – Simulating product performance and manufacturing processes electronically - Need for industrial design-impact – design process - investigation of customer needs - conceptualization - refinement - management of the industrial design process - technology driven products - user – driven products - assessing the quality of industrial design. MODULE-V DESIGN FOR MANUFACTURING AND PRODUCT 10 Hrs Definition - Estimation of Manufacturing cost-reducing the component costs and assembly costs – Minimize system complexity - Prototype basics - Principles of prototyping - Planning for prototypes - Economic Analysis - Understanding and representing tasks-baseline project planning - accelerating the project-project execution. Total Hours 48 Hrs TEXT BOOK 1. Product Design and Development, Karl T.Ulrich and Steven D.Eppinger, McGraw –Hill InternationalEdns.1999 REFERENCES: 1. Concurrent Engg /Integrated Product Development Kemnneth Crow DRM Associates	
CAE, CAD, CAM tools – Simulating product performance and manufacturing processes electronically - Need for industrial design-impact – design process - investigation of customer needs - conceptualization - refinement - management of the industrial design process - technology driven products - user – driven products - assessing the quality of industrial design. MODULE-V DESIGN FOR MANUFACTURING AND PRODUCT 10 Hrs Definition - Estimation of Manufacturing cost-reducing the component costs and assembly costs – Minimize system complexity - Prototype basics - Principles of prototyping - Planning for prototypes - Economic Analysis - Understanding and representing tasks-baseline project planning - accelerating the project-project execution. Total Hours 48 Hrs TEXT BOOK 1. Product Design and Development, Karl T.Ulrich and Steven D.Eppinger, McGraw –Hill InternationalEdns.1999 REFERENCES: 1. Concurrent Engg /Integrated Product Development Kemnneth Crow DRM Associates	
Need for industrial design-impact – design process - investigation of customer needs - conceptualization - refinement - management of the industrial design process - technology driven products - user – driven products - assessing the quality of industrial design. MODULE-V DESIGN FOR MANUFACTURING AND PRODUCT DEVELOPMENT Definition - Estimation of Manufacturing cost-reducing the component costs and assembly costs – Minimize system complexity - Prototype basics - Principles of prototyping - Planning for prototypes - Economic Analysis - Understanding and representing tasks-baseline project planning - accelerating the project-project execution. TEXT BOOK 1. Product Design and Development, Karl T. Ulrich and Steven D.Eppinger, McGraw –Hill InternationalEdns.1999 REFERENCES: 1 Concurrent Engg /Integrated Product Development Kempneth Crow DRM Associates	
refinement - management of the industrial design process - technology driven products - user - driven products - assessing the quality of industrial design. MODULE-V DESIGN FOR MANUFACTURING AND PRODUCT DEVELOPMENT 10 Hrs Definition - Estimation of Manufacturing cost-reducing the component costs and assembly costs - Minimize system complexity - Prototype basics - Principles of prototyping - Planning for prototypes - Economic Analysis - Understanding and representing tasks-baseline project planning - accelerating the project-project execution. Total Hours 48 Hrs TEXT BOOK 1. Product Design and Development, Karl T.Ulrich and Steven D.Eppinger, McGraw -Hill InternationalEdns.1999 Karl T.Ulrich and Steven D.Eppinger, McGraw -Hill Hill REFERENCES: 1 Concurrent Engg /Integrated Product Development Kemnneth Crow DRM Associates Development	
driven products - assessing the quality of industrial design. I0 Hrs MODULE-V DESIGN FOR MANUFACTURING AND PRODUCT DEVELOPMENT 10 Hrs Definition - Estimation of Manufacturing cost-reducing the component costs and assembly costs – Minimize system complexity - Prototype basics - Principles of prototyping - Planning for prototypes - Economic Analysis - Understanding and representing tasks-baseline project planning - accelerating the project-project execution. Total Hours 48 Hrs TEXT BOOK I. Product Design and Development, Karl T.Ulrich and Steven D.Eppinger, McGraw –Hill InternationalEdns.1999 REFERENCES: 1 Concurrent Engg /Integrated Product Development, Kemnneth Crow, DRM Associates	
MODULE-V DESIGN FOR MANUFACTURING AND PRODUCT DEVELOPMENT 10 Hrs Definition - Estimation of Manufacturing cost-reducing the component costs and assembly costs – Minimize system complexity - Prototype basics - Principles of prototyping - Planning for prototypes - Economic Analysis - Understanding and representing tasks-baseline project planning - accelerating the project-project execution. Total Hours 48 Hrs TEXT BOOK 1. Product Design and Development, Karl T.Ulrich and Steven D.Eppinger, McGraw –Hill InternationalEdns.1999 REFERENCES: 1 Concurrent Engg /Integrated Product Development Kempneth Crow DRM Associates	
DEVELOPMENT Definition - Estimation of Manufacturing cost-reducing the component costs and assembly costs – Minimize system complexity - Prototype basics - Principles of prototyping - Planning for prototypes - Economic Analysis - Understanding and representing tasks-baseline project planning - accelerating the project-project execution. Total Hours 48 Hrs TEXT BOOK 1. Product Design and Development, Karl T.Ulrich and Steven D.Eppinger, McGraw –Hill InternationalEdns.1999 REFERENCES: 1 Concurrent Engg /Integrated Product Development Kempneth Crow DRM Associates	
Definition - Estimation of Manufacturing cost-reducing the component costs and assembly costs – Minimize system complexity - Prototype basics - Principles of prototyping - Planning for prototypes - Economic Analysis - Understanding and representing tasks-baseline project planning - accelerating the project-project execution. Total Hours 48 Hrs TEXT BOOK 1. Product Design and Development, Karl T.Ulrich and Steven D.Eppinger, McGraw –Hill InternationalEdns.1999 REFERENCES: 1. Concurrent Engg /Integrated Product Development, Kempneth Crow, DRM Associates	
Minimize system complexity - Prototype basics - Principles of prototyping - Planning for prototypes - Economic Analysis - Understanding and representing tasks-baseline project planning - accelerating the project-project execution. Total Hours 48 Hrs TEXT BOOK 1. Product Design and Development, Karl T.Ulrich and Steven D.Eppinger, McGraw –Hill InternationalEdns.1999 REFERENCES: 1. Concurrent Engg /Integrated Product Development, Kempneth Crow, DRM Associates	
Economic Analysis - Understanding and representing tasks-baseline project planning - accelerating the project-project execution. Total Hours 48 Hrs TEXT BOOK 1. Product Design and Development, Karl T.Ulrich and Steven D.Eppinger, McGraw –Hill InternationalEdns.1999 REFERENCES: 1 Concurrent Engg /Integrated Product Development, Kempneth Crow, DRM Associates	
Text BOOK 1. Product Design and Development, Karl T.Ulrich and Steven D.Eppinger, McGraw –Hill InternationalEdns.1999 REFERENCES: 1. Concurrent Engg /Integrated Product Development, Kempneth Crow, DRM Associates	
TEXT BOOK 1. Product Design and Development, Karl T.Ulrich and Steven D.Eppinger, McGraw –Hill InternationalEdns.1999 REFERENCES: 1 Concurrent Engg /Integrated Product Development, Kempneth Crow, DRM Associates	
TEXT BOOK 1. Product Design and Development, Karl T.Ulrich and Steven D.Eppinger, McGraw –Hill InternationalEdns.1999 REFERENCES: 1 Concurrent Engg /Integrated Product Development, Kempneth Crow, DRM Associates	
1. Product Design and Development, Karl T.Ulrich and Steven D.Eppinger, McGraw –Hill InternationalEdns.1999 REFERENCES: 1 Concurrent Engg /Integrated Product Development Kempneth Crow DRM Associates	
InternationalEdns.1999 REFERENCES: 1 Concurrent Engg /Integrated Product Development Kempneth Crow DRM Associates	
REFERENCES: 1 Concurrent Engg /Integrated Product Development Kempneth Crow DRM Associates	
1 Concurrent Engg /Integrated Product Development Kempneth Crow DRM Associates	
6/3, ViaOlivera, Palos Verdes, CA 90274(310) 377-569, Workshop Book	
2. Effective Product Design and Development, Stephen Rosenthal, Business One Orwin,	
Homewood, 1992, ISBN, 1-55623-603-4	
5. I ool Design – Integrated Methods for successful Product Engineering, Stuart Pugh, Addison	

NARAYANAENGINEERINGCOLLEGE:GUDUR										
	GAS TURBINES AND JET PROPULSION NECR BTECH (R21									
Semester		Hours/	Week	Total	Credits	Max Marks				
	L	Т	Р	hrs	С	CIE	S	EE	TC	TAL
V	3	0	0	48	3	40	(60	10	0

COURSECON TENT										
MODULE-1	GAS TURBINE OPERATING CYCLE	09Hours								
Simple open cycle gas turbine or air standard Brayton cycle, Actual Brayton cycle, the cycle air flow rate, the cycle work ratio, optimum pressure ratio or maximum cycle thermal efficiency, means of improving the efficiency and thespecific output of simple cycle.										
MODULE-2	GAS TURBINE	10Hours								
Gas Turbines; gas deviation from ideal regenerator, gas tur engine.	Gas Turbines; gas turbine applications, gas turbine advantages & disadvantages, energy flow & back work, deviation from ideal cycle, gas turbine with regeneration, thermal efficiency of gas turbine with & without regenerator, gas turbine engines, inter cooling & reheating, turbojet engine, turbofan engine, turboprop engine									
MODULE-3	JET PROPULSION	10Hours								
engines, classification engines and applic components, and pri- contrasting with pri-	engines, classification of – energy flow, thrust, thrust power and propulsion efficiency- need for thermal jet engines and applications. Turboprop and turbojet – thermodynamic cycles, plant layout, essential components, and principles of operation – performance evaluation – thrust augmentation and Thrust reversal – contrasting with piston engine propeller plant.									
MODULE-4	RAM JET AND ROCKET ENGINES	10Hours								
Ram jet- Thermo d evaluation – compar Rocket Engines: N classification, solid comparison of propu	 Ram jet- Thermo dynamic cycle, plant lay out, essential components – principle of operation – performance evaluation – comparison among atmospheric thermal jet engines. Rocket Engines: Need for applications- basic principle of operation and parameters of performance – classification, solid and liquid propellant rocket engines, advantages, domains of application – propellants – comparison of propulsion systems 									
MODULE-5	09Hours									
Rocket Technology feedsystems, injecto	Flight mechanics, application thrust profiles, acceleration s rs and expansion nozzles – rocket transfer and ablative cooling	taging of rockets, need for – ng.								
	: 48hours									
Text Book (s): 1. Gas Turbines , V. C 2. Gas turbines , cohe ReferenceBook(s): 1. Thermodynamics o 2. Rocket Propulsion 3. Element of Gas Tur	Ganesan TMGH 2006 n, Rogers & Sarvana Muttoo, Addision Wiley & longman20 f propulsion, Hill & Paterson.2009 , Sutton.2010 rbines propulsion, Jack D Matingly, MGHJack D Matingly, I	017 MGH1996								

			NAR	AYANAEN	GINEERI	NGCOLL	EGE:GUDUR			
FUNDAMENTALS OF ADDITIVE MANUFACTURING NECR BTECH (R21)										
Semester	Hours/	Week		Total hrs	Credits	Max Mark	s			
	L	Г	Р		С	CIE	SEE	TOTAL		
V	3 (0	0	48	3	40	60	100		
COURSE CONTENT										
MODULE- I INTRODUCTION 10 Hrs										
Introduction toAdditive Manufacturing- basic principles of additive manufacturing classification of the										
additive manufacturing process- benefits, the difference between additive manufacturing and CNC										
machining .A	machining .Additive manufacturing processes, Generic additive manufacturing process steps, Computer									
Aided Proces	s Planni	ng for	Additiv	e Manufactur	ring					
MODULE-II		LIQ	UID A	DDITIVE M	ANUFAC	TURING	9 Hrs			
Liquid Additi	ve Man	ufactur	ring- cl	assification,	VAT phot	opolymeriz	ation process -	- materials – process		
benefits and c	lrawbac	ks, ma	terial je	etting- materi	al jetting	process in	fundamentals, 1	naterials for material		
jetting, mater	ial jettir	igmach	nnes, m	aterial jetting	g benefits a	and drawba	cks			
MODULE-II		SH	EET A	DDITIVE M	IANUFAC	<u>TURING</u>	10Hrs	11 ' 1 1'		
Sheet Additiv	e Manu	facturii	ng, proc	cess and mate	erial select	ion, applic	ations, gluing /a	adhesive bonding,		
bond- then- fo	orm pro	cesses,	Iorm-t	nen-bond pro	ocess, the	mal bondi	ng , ultrasonic	additive		
	, applic		,urawba	ICKS		FUDINC	0 Uma			
Wine Additiv		vv I		DITIVE MA	ANUFAC.	UKING	9 HIS	ning nuccess wing one		
wire Additiv	e Manu		ng- pri d moto	rial soloctio	system of	ations E	and deposition	modelling meterial		
selection app	lication	ng an c limita	u man	f FDM FDM	m, applie machines	ations, Pt	ised deposition	mouening, materiai		
MODULE-V	MODILE F.V POWDER ADDITIVE MANUEA CTUDINC 10 Urg									
Dowder Additive Manufacturing process and material selection applications trands and future										
directions. di	rect en	ergy d	enositic	n (DED)pro	cess desci	ription. las	er based metal	deposition process.		
electron beam	based r	netalde	positio	n process, pro	ocess parai	meters. lim	itations	deposition process,		
			I	<u> </u>	1	To	tal Hrs 48 Hrs			
TEXT BOOKS	5:									
1. Additive M	lanufact	uring T	Technol	ogies: 3D Pri	nting, Rap	id Prototyp	ing, and Direct	Digital		
Manufactu	ring, Ian	Gibson	n, Davie	d W Rosen, B	Brent Stuck	ter, Springe	er, 2015, 2nd Ed	ition.		
2. 3D Printin	g and A	dditive	Manut	acturing: Prin	nciples & A	Application	s, Chua Chee K	ai, Leong Kah Fai,		
WorldScie	ntific, 2	2015, 41	th Editi	on						
DEEDENCE	<u>с.</u>									
1 Papid Protot	S: Vning: I	acor h	acad an	d Other Tech	nologias	Dotri K. Vo	nuvinod and W	nivin Mo Springer		
1. Kapid Flotot	yping. I	Laser-D	aseu an		noiogies, i	raurk. ve		ayın Ma, Springer,		
2004. 2 Rapid Manuf	acturing	• The T	Fechnol	ogies and An	nlications	of Rapid P	rototyning and I	Panid Tooling D T		
Pham S S D	imov S	bringer	r 2001	ogles und rip	prications	or Rupiu I	rototyping and r	apia roomig, D.r.		
3. Rapid Protot	vping: F	Princip	les and	Applications	in Manufa	cturing. Ra	fia Noorani. Jol	nn Wiley & Sons.		
2006.	JF8. I	·•·P		rrwioib			1, 001			
4. Additive Mar	nufactur	ring, Se	cond E	dition, Amit H	Bandyopac	lhyay Susn	nita Bose, CRC	Press Taylor &		
FrancisGrou	p, 2020.			-			,	-		
5. Additive Ma	nufactu	ring: Pi	rinciple	s, Technologi	ies and Ap	plications,	C.P Paul, A.N J	unoop, McGrawHill,		
2021.			-	C				_		

NARAYANAENGINEERINGCOLLEGE:GUDUR										
MANAGEMENT SCIENCE NECR BTECH (R21)										
Semester	Hours	s/ Wee	k	Total hrs	Credits	Max Mark	TS			
	L	Т	Р		С	CIE	SEE	TOTAL		
V	3	0	0	48	3	40	60	100		
COURSE CONTENT										
MODULE- IINTRODUCTION TO MANAGEMENT10 Hrs										
Management - Concept and meaning - Nature-Functions - Management as a Science and Art and both.										
Schools of Management Thought - Taylor's Scientific Theory-Henry Fayol's principles - Eltan Mayo's										
Human relati	ons -	Syste	ms The	ory - Organ	nisational	Designs -	Line organizat	tion - Line & Staff		
Organization -	- Func	tional	Organiz	ation - Matrix	x Organizat	tion - Proje	ct Organization	- Committee form of		
Organization -	- Socia	al respo	onsibilit	ies of Manage	ement					
	r I						T	0.11		
MODULE-II		C DI	. •	OPERATIC	DNS MANA	AGEMEN		9 Hrs		
Principles and	Type	s of Pl	ant Lay	out - Methods	s of Product	10n (Job, b	atch and Mass I	Production), Material		
Management	- Obj	ectives	s - Inve	ntory-Functio	ns - Types	, Inventory	Techniques - H	OQ-ABC Analysis -		
Purchase Proc	cedure	and S	tores M	anagement -	Marketing	g Manager	nent - Concept	- Meaning - Nature-		
Functions of M	Market	ting - F	roduct I	Life Cycle.				10.11		
MODULE-II			HUMA	N RESOUR	CES MAN	AGEMEN	T (HRM)	10 Hrs		
HRM - Defini	ition a	nd Me	anıng –	Nature - Mar	nagerial and	1 Operative	e functions - Eve	olution of HRM - Job		
Analysis - Human Resource Planning(HRP) - Employee Recruitment-Sources of Recruitment - Employee										
Selection - Pr	ocess	and Te	ests in 1	Employee Sel	lection - E	mployee 'I	raining and De	velopment - On-the-		
job & Off-the	e-job t	training	g metho	ds -	DOIDOT			0.11		
MODULE-IV STRATEGIC & PROJECT MANAGEMENT 9 Hrs										
Definition& N	/leanir	ng - Se	tting of	V1S10n - M1S	sion - Goal	s - Corpora	ate Planning Pro	cess - Environmental		
Scanning - Ste	eps in	Strateg	gy Form	ulation and li	mplementat	10n - SWO	OI Analysis - Pr	oject Management -		
Inetwork Anal	19818 -	Progra	mme Ev	valuation and	Review 16	ecnnique (F	'ERT) - Critical	Path Method (CPM)		
		Patri - 1	Simple p	MDODADV	TCOLIECT		TEMENT	10 11-		
The series to	f Mar			WIFUKAKI						
The concept of	on Mar	ageme		mation Syste	m(MIS) - 1	vialeriais R	Requirement Plan	(EDD) Derformen		
Quality Mana	igemer	$\mathbb{I}(\mathbf{I}\mathbf{Q})$	NI) - SI	x Sigina Con	(\mathbf{PO}) \mathbf{Puoi}	erprise Kes	ource Planning	(ERP) - Performance		
Management -	- Busii	ness Pr	ocess O	utsourcing (B	6PO) - Busi	ness Proces	ss ke-engineerin	g and Bench Marking		
						Т	otal Hours	48 Hrs		
	7									
	N	·· Mana	aamaant	Salanaa" TM	TT 2012					
1. A.K Aryasri, "Management Science", 1MH, 2013 Kuman/Dag/Chhalill (Intra Justian to Management Science) Concern Dalki, 2012										
2. Kumal/	2. Kumar/Kao/Chhalill Introduction to Management Science' Cengage, Delhi, 2012.									
REFERENCI	FS.									
1 Koontz & W	eibric	h "Fe	sentiale	of Manageme	ent" 6 th edi	ion TMH	2005			
2 Kanishka F	Redi "	Produc	ction and	Operations N	Managemer	nt" Oxford	University Pres	s 2004		
3 Samuel C Certo "Modern Management" 9 th edition PHI 2005										

3. Samuel C.Certo, "Modern Management", 9th edition, PHI, 2005

NARAYANA ENGINEERING COLLEGE:GUDUR										
FLEXIBLE MANUFACTURING SYSTEMS NECR BTECH (R21)										
Semester	Hours	/ Week	Total	Credit		Max	x Marks			
	L T	P	hrs	C	CIE	SEE	TOTAL			
	3 0	0	48	3	40	60	100			
	COURSE CONTENT									
MODULE - 1 INTRODUCTION 10 Hours										
Introduct	Introduction: Definitions of manufacturing with input-output model, definition of system, basic problems									
concerning systems and system design procedure, modes of manufacturing - job/batch/flow and										
multiprodu	multiproduct, smallbatch manufacturing Flexibility and Types of Flexibility									
MODULE	2 -2	SCHEDUL MA	ING AND ANUFAC	CONTRO	DL OF FL SYSTEMS	EXIBLE S	08 Hours			
Developm	ent of Manufa	cturing System	ns – Benef	its – Major	Elements	—Single	Product, Single Batch, N			
- BatchSc	heduling Prob	lem – Knowled	lge Based	Scheduling	System.	_	-			
	-				-		10.77			
MODULE	2-3	GROUP TE	CHNOL	OGY AND OF FMS	JUSTIFI	CATION	10 Hours			
Introduction	on – Matrix	Formulation –	Mathema	tical Progr	amming I	Formulatio	on –Graph Formulation –			
Knowledg	e Based Syste	em for Group	Technolo	gy – Eco	nomic Jus	tification	Of FMS- Application of			
Possibility	Distributions	inFMS System	ns Justifica	tion.						
MODULE	2-4	COMPUTE	R CONTI	ROL AND	SOFTWA	RE FOR	10 Hours			
		FLEXIBLE	MANUFA	ACTURIN	G SYSTE	CMS:				
Introduction – composition of FMS- hierarchy of computer control –computer control of work center and										
assemblyl	ines – FMS su	pervisory com	outer contr	ol, Applica	tion of sin	nulation –	model of FMS- simulation			
software				× 11						
MODULE	2-5	APPLICA	TIONS 8	FUTURE		S OF FMS	S 10 Hours			
Applicatio	n - FMS Dev	velopment Tov	vards Fact	ories of T	ne Future	– Artifici	al Intelligence and Expert			
Systems in	n FMS – Desig	nPhilosophy a	nd Charact	teristics for	Future.	Т	tal hours: 48 hours			
						10				
Text Book	x(s):					. .	1001			
1. Jha, N.K.	. "Handbook	of flexible man	utacturing	systems",	Academic	Press Inc.	, 1991 t davalanment". Electrica			
2. Raout, A. and Ben-Daya, M., Editors, "Flexible manufacturing systems: recent development", Elsevier										
KEIEFENCE BOOK(S): 1 Radhakrishnan P and Subramanyan S "CAD/CAM/CIM" Wiley Factern I to New Age International										
Ltd., 199	4.	uorumun jun s.	, 01112/0		Whey Eu	storn Eta.,	rien rige international			
2. Groover 1	M.P., "Automa	tion, Productio	on Systems	s and Comp	uter Integ	rated Man	ufacturing", Prentice Hall			
of India F	vt., New Delh	i, 1996.								
3 Kalpakjia	n, "Manufactu	ring Engineerii	ng and Tec	hnology",	Addison-V	Vesley Pul	olishing Co., 1995.			
 Taiichi Ohno, "Toyota Production System: Beyond large-scale Production", Productivity Press (India) Pvt. Ltd. 1992 										

NARAYANAENGINEERINGCOLLEGE:GUDUR										
PRINCIPLES OF METAL EXTRACTION AND REFINING NECR BTECH (R21)										
Semester		Hours/	Week	Total	Credits		N	Max Marks		
	L	Т	Р	hrs	С	CIE	SEE	TOTAL		
V	3	0	0	48	3	40	60	100		
COURSECONTENT										
MODULE-1 INTRODUCTION TO METAL EXTRACTION 09Hours										
Definitions: Ore, Minerals, Metals, etc. Scope of extractive metallurgy, Drying, Calcining, Sintering, Roasting, Smelting, Distillation, Firere fining Hydrometallurgy, Steps involved, Importance. Merits of pyro and hydrometallurgy. Electrometallurgy, Electro winning. Electro refining. Applications. Fundamentals of MODUL EProcess MODUL Experimental Science										
MODULE-2			C	CHEMICA	AL REAC	ΓΙΟΝ		10Hours		
Review of chemical equilibrium. The basic concept of free energy change. Requirements forpredictionand calculation of a chemical reaction. Ellingham diagram in detail for metaloxides. Activities in concentrated solution and in industrial liquid metallic solution 1wt/std.State. Henrian solution activity and activity coeff										
MODULE-3 TYPES OF REACTIONS 10Hours										
Effect of conc	: Of reac	ting subs	tances or	rate of a	reaction. C	Order and	d mole cularity	y of a reaction, reaction		
and concentrat	tion of re	eactant of	$f 1^{st}, 2^{nd},$	and nth o	order. Deter	rminatio	n of order and	l velocity constant of a		
reaction. Reve	rsible rea	actions. T	The effect	of temper	rature on r	ates of r	eactions. Arrh	enius equation, Role of		
activation ener systems	rgy. The	ory of at	osolute re	actions. R	lates, Appl	licability	of reaction k	inetics to metallurgical		
MODULE-4			EXTR	ACTION	OF MET	ALS		09Hours		
Extraction of	metals f	from oxic	le and su	lphide ore	es. Reducti	ion of o	xide ores by	Carbon Hydrogen metal		
lothermic red halides and su	uction (A	Al,Si,Mg,	Ca.etc). on. Reduc	Electrolys tion of sul	is at low phide ores	pressure by reduc	and high protection, smelting	essure. Conversion into and mattes melting.		
MODULE-5				REFIN	ING OF M	IETALS	5	10Hours		
Refining of impure metals. Introduction chemical, electrochemical and physical methods i.e. fire refining. Refining via volatile comp. Electrolysis, Distillation. Zone refining, Materials and heat balance. Flow diagram. Techniques and procedure of material balance. Techniques and methods of heat balance										
Totalhours: 48Hours										
Text Book(s):										

Principles of Metal Refining and Recycling by by Thorvald Abel Engh (Author), Geoffrey K. Sigworth (Author), Anne Kvithyld (Author)2021
 The Extraction and Refining of Metals By Colin Bodsworth 2021

Reference Books:

1. Principles of Extractive MetallurgyAhindra Ghosh, Hem Shanker Ray New Age International, 1991
| | | | P | ROFES | SIONAI | L ELEC | CTIVE-2 | |
|--------------------------|----------|----------|--------------|------------------------------|---------------------|--------------|-----------------|--------------------------|
| | | | | NARAYAN | AENGINE | ERINGCO | OLLEGE:GU | DUR |
| | | Γ |)
esign (| of Material H | landling Eq | uipment | NEC | CR BTECH (R21) |
| Semester | Hour | s/Wee | k | Total hrs | Credits | Max Mark | S | · · · · · |
| | L | Т | Р | | С | CIE | SEE | TOTAL |
| VI | 3 | 0 | 0 | 48 | 3 | 40 | 60 | 100 |
| | | | | COU | IRSE CON | ГЕНТ | | |
| MODULE- | Ι | | MAT | ERIALS HA | NDLINGE | QUIPMEN | T | 10 Hrs |
| Introduction | to mate | erial ha | ndling | Equipment, D | etail classifi | cation of M | IHE, Applicat | ion and their selection. |
| MODULE- | Π | | | DESIGN | OF HOIS | ГS | | 9 Hrs |
| Design of h | oisting | Equip | ment li | kes: Wire an | d Hemp Ro | pe, Welde | d and roller of | chains. Design of ropes, |
| pulleys, Pull | ey syst | ems, S | procket | s and drums, | Load handl | ing attachn | nents. Design | of Hooks: forged hooks |
| and eye hool | ks, Giro | ler Des | ign, Cr | ane grabs, Gra | abbing attac | hments, De | sign of arresti | ng gear. |
| MODULE- | III | | | DESIGN O | F CONVE | YORS | | 10 Hrs |
| Classification | n of C | onveyo | rs, Des | ign and appli | cations of E | Belt Convey | yors, Apron C | Conveyors and Escalators |
| Pneumatic C | onveyo | ors, Scr | ew con | veyors and vi | bratory conv | veyor | - | - |
| MODULE- | IV | | | DESIGN O | F ELEVAT | ORS | | 10 Hrs |
| Design of Bu
weights. | ucket e | levator | s: Load | ing and buck | et arrangem | ents, Cage | elevators, Sh | aft way, Guides, counter |
| MODULE- | V | | | SAFETY A | ND TRAIN | NING | | 9 Hrs |
| Need, Enviro | onment | al and l | numan f | actors in mat | erial handlir | ng, Safety R | Regulations | |
| | | | | | | | Total hours | 48 Hours |
| | | | | | | | | |
| TEXT BOOK | ζ: | | | | | | | |
| 1. Material H | andling | Equip | ments b | y Rudenko. N | AIR Publish | ers1964 | | |
| 2. Alexandrov | / M., "I | Materia | ls Hanc | lling Equipme | ents", MIR I | Publishers, | 1981. | |
| REFERENCI | ES: | | | | | | | |
| 1. ASM | E, "Ma | terials | Handliı | ng Handbook' | ', Wiley -Int | erscience, | 1985 | |
| 2. Spival | kovsy / | A.O. an | d Dyac | hkov V K, "C | onveying M | lachines", V | Volume I and I | II, MIRPublishers, 1985 |
| 3. Ťech | PSĠ, | "Desig | n Data | Book", Kalail | kathir Achcl | nagam, Coi | mbatore, 2003 | 3. |
| 4. Princ | iples of | f Extrac | tive M | etallurgy, <mark>Fath</mark> | <u>ii Habashi</u> C | RC Press, | 1969 | |

Ν	ARAYAN	NA EN	GINEERIN	G COLL	EGE:GUD	UR		
			POWER I	PLANT E	NGINEER	ING		NECR BTECH R21
Semester	Н	ours / '	Week	Total	Credit			Max Marks
	L	Т	Р	hrs	С	CIE	SEE	TOTAL
VI	3	0	0	48	3	40	60	10
			COU	RSE CO	NTENT			0
MOD	U LE – 1		Ι	NTRODU	JCTION			10 Hours
Introduction to	the Source	es Of	Energy - Re	sources an	nd Develop	ment of F	Power in In	ndia. Conventional and
non- convention	nal energy	v source	es, Power Pl	ant Econo	mics and E	nvironmei	ntal Consid	derations: Capital Cost,
Investment of F	ixed Chai	rges, C	Deprating Co	sts, Gener	al Arrange	ment of P	ower Dist	ribution, Load Curves,
Load Duration	Curve. De	efinitio	ns of Conne	cted Load	, Maximun	n Demand	, Demand	Factor, Average Load,
Load Factor, I	Diversity 2	Factor	- Tariff - R	Related Ex	ercises. Ef	fluents fro	om Power	Plants and Impact on
Environment –	Pollutant	s and l	Pollution Sta	andards -	Methods of	Pollution	n Control.	Inspection And Safety
Regulations.								
MODULE -2			STEAM P	OWER P	LANT			10 Hours
Introduction to	Boilers- N	Modern	h High Press	ure and Su	upercritical	Boilers -	Analysis o	of Power Plant Cycles -
Modern Trends	in Cycle	Impro	vement - W	aste Heat	Recovery,	Fluidized	Bed Boile	ers., Fuel and Handling
Systems Stean	Power P	Dais, C Plant	Combustion	Process ·	Properties	of Coal	- Overfeed	and Under Feed Fuel
Beds. Travellin	g Grate S	tokers.	Spreader St	tokers. Re	tort Stokers	5. Pulveriz	zed Fuel B	Surning System And Its
Components, C	Combustio	n Need	ds and Drau	ght Syste	m, Cyclone	Furnace	, Design a	and Construction, Dust
Collectors, Coo	ling Tow	ers Ai	nd Heat Re	ejection.	Analysis of	f Pollutio	n from 7	Thermal Power Plants
- Pollution Co	ntrols.CO	2 Reco	orders					
MODULE-3			DIESEI &	CAS TI	IDRINF DI	ANT		10 Hours
			DIESEL	CGAS IC				10 110015
DIESEL POWI	FR PI ΔΝ'	T· Dies	el Power Pla	ant Const	ruction Pla	nt lav out	with auvil	iaries fuel storage
		T. Dic:			. ~ ~	in iay out	-	laries, fuer storage.
GAS TURBIN	E PLAN	T: Int	roduction -	Classific	ation - Co	nstruction	1 - Layou	it with Auxiliaries -
Cycle Power Pl	orking C	losed a	and Open Cy	cie Gas	urbines. A	uvantages	s And Dis	advantages Combined
MODULE-4	unts		HYDRO E	ELECTRI	C PLANT	&		08 Hours
HVDRO FLE		OWER	DI ANT	Nator Do	wor Hyd	rological	Cycle /	Flow Measurement
Drainage Area	Character	istics	Hydrograp	he Store	wei - Ilyu	iological	Lycit /	on of Dame and Snill
Ways	Character	151105 -	Tyulograp	115 - 51014	ige and 1 of	luage - C	lassificatio	on of Danis and Spin
HVDRO PROI	ECTS AN	ע די די	ANT. Classif	fication "	Typical Lay	oute Die	nt Auvilia	ries Plant Operation
PumpedStorage	Donte Diante				i ypicai Lay	outs - 1 12		ules - I lant Operation
	i lains.		NON CON				1011	
MODULE-5			NUCLEA	R POWE	DNAL SOU R STATIO	N		ours
POWER FROM	I NON-C	ONVE	NTIONAL S	SOURCES	S: Utilizatio	n of Solar	Collector	s- Working Principle,
WindEnergy - 7	Гуреs of T	Turbine	es - HAWT &	& VAWT-	Tidal Energ	gy. MHD	power Gei	neration.
NUCLEAR PC	OWER ST	ATIO	N: Nuclear	Fuel - Nu	clear Fission	on, Chain	Reaction	, Breeding and Fertile
Materials - Nuc	clear Read	ctor -R	leactor Oper	ation. Typ	pes of Read	ctors: Pre	ssurized V	Vater Reactor, Boiling
Water Reactor	, Sodium	-Graph	ite Reactor,	Fast bre	eder Reac	tor, Hom	ogeneous	Reactor, Gas Cooled
Reactor, Radiat	ion Hazar	dsand	Shielding - F	Radioactiv	e Waste Dis	sposal.		
							Т	otal hours: 48 hours
Text Book(s):								
1. P.K. Nag, "Po	ower Plan	t Engin	neering", 3rd	edition, T	MH, 2013.	011		
2. wakii, "Pow	er plant te	cnnolo	ogy∵, M.M.E	A I MH PU	idiications.2	2011		

Reference Book(s):

- Raiput, "A Text Book of Power Plant Engineering:, 4th edition, Laxmi Publications, 2012.
 Ramalingam, "Power plant Engineering", Scietech Publishers, 2013
 P.C. Sharma, "Power Plant Engineering", S.K. Kataria Publications, 2012.
 Arora and S.Domakundwar, "A course in Power Plant Engineering", Dhanpat Rai & Co (p) Ltd, 2014.

			NARAYANA	ENGINE	ERINGCO	LLEGE: GUI	DUR
	MO	DERN	MANUFAC	TURING	METHOD	S NEC	R BTECH (R21)
Semester	Hours/ Weel	ĸ	Total hrs	Credits	Max Mark	S	
	L T	Р		С	CIE	SEE	TOTAL
VI	3 0	0	48	3 E CONTEN	40	60	100
		No	COURS	E CONTE	NI na Duo ooga	0.0	10 IIm
Non Trad	itional Mac	hining	Processes	Introductic	ng Frocess	Classification	and Brief Overview
Consideration	s in Process se	election	Materials A	nnlications	i, inceu,	Classification	and Difer Overview,
Mechanical H	Energy Based	d Proc	esses: Abrasiv	ve Jet Mach	nining. Wat	er Jet Machinii	ng. Abrasive Water Jet
Machining, U	ltra Sonic M	achinir	ng – Working	Principle,	Description	n of Equipmen	t, Process Parameters,
Metal Remova	al Rate, Appli	ication	s, Advantages	and Limita	tions.		
MODULE-II]	Electrical Ene	ergy Based	Processes		9 Hrs
Electric Discl	harge Machi	ning –	Working Pr	inciples, I	Description	of Equipment	, Process Parameters,
Surface Finis	h and MRR,	Electr	ode / Tool, H	ower and	Control Ci	rcuits, Tool W	ear, Dielectric Fluid,
Flushing, Adv	antages, Lim	itations	s and Applicat	tions. wire	cut EDM –	working Princ	cipie and Applications.
MODULE-II	I Chemical	and E	lectro Chemi	cal Energy	Based Pro	Cesses	10 Hrs
Chemical Ma	chining and	Electro	Chemical M	achining –	Working	Principle Desc	ription of Equipment
Etchants. Mas	skants. Techr	niques	of Applying	Maskants.	Process Pa	rameters. Surf	ace Finish and MRR.
Electro Chemi	cal Grinding	, Électr	o Chemical H	loning, App	olications, A	Advantages and	Limitations.
MODULE-I	Thermal	Energy	Based Proce	esses			10 Hrs
Laser Beam I	Machining ar	nd Dril	ling, Plasma	Arc Machi	ning, Elect	ron Beam Ma	chining – Working
Principle, Desc	cription of Eq	luipmer	nt, Process Pa	rameters, A	pplications	, Advantages a	nd Limitations.
MODULE-V			Ultraso	nic Machir	ing		9 Hrs
ULTRASONI	C MACHINI	ING (U	SM): Introdu	ction, equip	ment, tool	materials & too	ol size, abrasive slurry,
Effect of par	rameters on	Mater	ial removal	rate, tool	wear, Acc	uracy, surface	e finish, applications,
advantages &	Disadvantage	es of U	SM.				
ABRASIVE J	ET MACHIN	VING (AJM): Introdu	uction, Equ	ipment, Va	riables in AJM	: Carrier Gas, Type of
abrasive work	material, Pr	ocess (characteristics	-Material 1	emoval rat	e, Nozzle wear	, Accuracy & surface
finish. Applie	cations, adv	antage	s & Disad	vantages (of AJM.	Water Jet M	Machining: Principle,
Equipment, C	peration, Ap	plicatio	on, Advantage	s and minita	uions	Total Hours	18 Hrs
TEVT DOOK						Total Hours	40 1115
1 Jain V K	Advanced	Machir	ing Processes	1 st Edition	h Allied Du	hlichare Dut I	td New Delhi 2007
2 Pandey P	C and Shan	H S M	Inig i locesses Iodern Machi	ning Proces	ses 1/e M	cGraw Hill Ne	w Delhi 2007
3. Ian Gibso	on. David W.	Rosen	Brent Stucke	r. Additive	Manufactu	ring Technolog	ries: Rapid Prototyping
toDirect]	Digital Manu	facturi	ng, 1/e, Spring	ger, 2010.		0	,
REFERENCE	S:			-			
1. Chua C.	K., Leong K.	F. and	Lim C.S., Rap	oid Prototy	oing: Princi	ples and Applic	cations, 2/e, World
Scientific	Publishers, 2	2003.					
2. Benedict	G.F., Nontra	ditiona	I Manufacturi	ng Processe	es, 1/e, CRC	Press, 1987.	D 11 - 001 4
3. Mishra P	.K., Nonconv	entiona	al Manufactur	ing, I/e, Na	arosa Publis	hing House, No	ew Delhi, 2014.
4. McGeoug	gii J.A., Auva	incea M	iethous of Ma	chining, 1/	e, springer,	1900.	

			NARAY	ANA ENGINI	EERING COI	LEGE:GUD	UR	
			ENC	GINEERING O	PTIMIZATIO	N I	NECR B	TECH (R21)
Semester	H	Iours / Weel	k	Total hrs	Credit	Max Marks		
	L	Т	Р		С	CIE	SEE	TOTAL
VI	3	0	0	48	3	40	60	10 0
			C	COURSE CON	ITENT			
MODU	JLE – 1	L	INEAR P	ROGRAMMI	NG PROBLE	Μ	1	Oh
OR definit	ion- Class	sification of	f Models -	-Types of Op	erations Rese	arch models,	Linear	Programming
Problem F	ormulation,	Graphical	Method, S	implex Metho	d, Two– Phas	e Simplex Me	thod, Bi	g-M Method,
Problem of	Degenerac	y, conversio	on to prima	l to dual and du	ual simplex me	thod		
MOD	ULE -2		TRAN	SPORTATIO	N PROBLEM	[9h	
Transporta	ion Proble	m – Formu	ulation; Di	fferent Metho	ods of Obtaini	ng Initial Bas	ic Feasi	ble Solution-
North- We	st Corner R	ule, Least C	Cost Method	l, Vogel'sAppi	roximation Me	thod;Optimalit	yTesting	g. Unbalanced
Transporta	tion Proble	em, Degene	rate Proble	em; Assignme	ent Problem -	- Formulation	; Optima	al Solution -
Traveling S	Salesman pi	roblem. Seq	uencing -A	ssumptions-n-	jobs-2 Machin	es model, n-jo	bs-3-mac	chines models
& n jobs –	m Machine	s models						
MOD	ULE-3			PERT & C	PM		10h	
PERT & O	CPM: Intro	duction to	Project Ma	nagement, Ac	tivities, Event	s, Predecessor	Relatio	nships, AOA
Diagram,E	arly Start, H	Early Finish	, Late Start	& Late Finish	Times, Earlies	st Occurrence	and Lates	st Occurrence
of the Ever	nt, Total Fl	oat, Free Fl	oat, Indepe	ndent Float Cl	PM- Determin	istic Model- C	ritical Pa	ath, Crashing,
Optimal P	oject Dura	tion, Least	Possible I	Project Duration	on PERT- Pro	babilistic Mo	lel- Var	ious types of
Activity Ti	me Estimat	tes, Standar	d Deviatio	n and Variance	e of the Activi	ties and Projec	ets, and l	Probability of
Completing	g the Projec	t within sch	eduled time	e				
MOD	ULE-4	DYNAMI	C PROGR	AMMING&R	EPLACEME	NT MODELS	5	10h
Dynamic I	Programmir	ng : Introdu	uction – B	Bellman"s Prin	ciple of Opti	mality – App	lications	of Dynamic
Programmi	ng- Capita	l Budgeting	g Problem	- Shortest Pa	ath Problem -	- Solution of	Linear	Programming
Problem by	DP, cargo	-loading pro	blem, emp	loyment Smoo	thing			
Replaceme	nt Models:	Introductio	n –Types o	of Replacemen	t Problem, De	termination of	Econom	nic Life of an
Asset, and	Simple Pro	babilistic M	lodel for Ite	ems which con	npletely fail-In	dividual Repla	cement l	Model, Group
Replaceme	nt Model							
MOD	ULE-5		OPTI	MIZATION TH	ECHNIQUES		9h	

Introduction to Optimization: Engineering application of Optimization – Statement of an Optimization problem - Optimal Problem formulation - Classification of Optimization problem. Optimum design concepts: Definition of Global and Local optima, Optimality criteria Optimization algorithms for solving unconstrained optimization problems – Gradient based method: Cauchy's steepest descent method, Newton's method, Conjugate gradient method

Heuristic Programming – Greedy Heuristic, Meta Heuristic – Tabu Search Algorithm, Simulated Annealing Algorithm, Genetic Algorithm, Application of Metaheuristics to Integer Linear Programs, Constraint Programming.

Total hours: 48 hours

Text Book(s):

- 1. Operation Research, J.K.Sharma, MacMilan, 5th edition, 2013.
- 2. Engineering Application Of Optimization, Ravichandran, K.M.Ragsdell, G.V.Reklaitis2007
- 3. Engineering of Optimization BY SS RAO 2000

Reference Book(s):

- 1. Operations Research by R Panneerselvam, PHI, 2nd edition, 2012.
- 2. Operations Research, Wagner, PHI Publications, 2ndedition. 2003
- 3. Prem Kumar Gupta "Introduction to Operations Research" S.Chand, 2012
- 4. Operations Research S.D Sharma 5th edition, 2011

	Ν	IARAYAN	NAENGIN	EERING	COLLEGI	E:GUD	UR	
			MECHA	TRONICS	5		NECR BTE	CH (R21)
Semester		Hours/	Week	Total	Credits		Ma	ax Marks
	L	Т	Р	hrs	С	CIE	SEE	TOTAL
VI	3	0	0	48	3	40	60	100

	COURSECONT ENT	
MODULE-1	INTRODUCTION	10Hours
Mechatronics systems, elem measurement systems, contr of mechatronics systems. S motion, force, acceleration, t	hents, levels of mechatronics system, Mechatronics d col systems, microprocessor-based controllers, advanta bensors and transducers, types, displacement, positio torque, fluid pressure, liquid flow, liquid level, tempera	lesign process, system, ages and disadvantages n, proximity, velocity, ature and light sensors.
MODULE-2	ELECTRONIC DEVICES	09 Hours
Solid state electronic devi conditioning, amplifiers, filte	ices, PN junction diode, BJT, FET, DIA and T ering. Introduction to MEMS & typical applications.	RIAC. Analog signal
MODULE-3	HYDRAULIC AND PNEUMATIC SYSTEMS	10 Hours
Hydraulic and pneumatic ac valves, electro-pneumatic, systems and electrical actua	ctuating systems, Fluid systems, Hydraulic and pneu hydro-pneumatic, electro-hydraulic servo systems: ting systems.	matic systems, control Mechanical actuating
MODULE-4	DIGITAL ELECTRONIC SYSTEMS	09 Hours
Digital electronics and s programming, process contro PLCs for control.	ystems, digital logic control, micro processors ollers, programmable logic controllers, PLCs versus c	and micro controllers, computers, application of
MODULE-5	INTERFACING DEVICES	10Hours
System and interfacing and o models and analogies, System	data acquisition, DAQS, SCADA, A to D and D to A and D	conversions; Dynamic rends.
	Total	hours: 48 hours
TextBook(s): 1. MECHATRONICS In Raghavan/WILEY Ind	ntegrated Mechanical Electronics Systems/KP Ramach dia Edition/2008	andran & GK Vijaya
2. Mechatronics Electron	nics Control Systems in Mechanical and Electrical Eng	gineering/ W Bolton/
PearsonEducation Pre	ess/3rd edition, 2005.	
Reference Book(s):		
1. Mechatronics – Ele	ectronic Control Systems in Mechanical and Electrical	l Engg. 4th Edition,
Pearson,2012 W. B	Solton	
2. Mechatronics – Prir	nciples and Application Godfrey C. Onwubolu, Wlsevie	er, 2006 Indian print.

				NARA	YANAEN	GINEERI	NGCO	LLEGE:GU	DUR
					MET	ALLURG	Y	NECR	BTECH (R21)
Semester		Ho	ours/ V	Week	Total	Credits			Max Marks
	L		Т	Р	hrs	С	CIE	SEE	TOTAL
V	3		0	0	48	3	40	60	100
<u> </u>					COURSE	CONTEN	т		
					COURSE	CONTEN	1		
MODULE-1				CONS	TITUTIO	N OF AL	LOYS	& ALLOY	09Hours
Introduction to	o Constit	utio	on of a	alloys– c	lassificatio	on of alloys	s-pure	metal- purpos	se of alloying- effects
of alloying ele	ements u	pon	ferri	te, carbid	le, iron- ir	on carbide	diagra	m- effects of	alloying elements in
tempering- ni	ickel ste	els-	chro	omium s	teels-nicke	el chromiu	m stee	els-manganese	e steels-molybdenum
steels- tungste	n steels								
MODULE-2					TOO	L STEELS	5		10Hours
Classification	of Tool	Stee	els-Se	election of	of Tool St	eels -Shoc	k-resist	ing Tool Ste	els-Mold Steels-Heat
Treatment of	Tool Ste	eels	-Too	l Failure	s-Ceramic	Tools-Fa	ulty To	ol Design-Fa	ulty Steel- effect of
residual stresse	es- bendi	ng fi	ractur	es					
MODULE-3					FAILUR	E ANALY	SIS		10Hours
Introduction- n	nodes of	frac	ture-	fatigue fr	actures-ef	fect of strea	ngth rec	lucers- faulty	processing-beach
marks									
MODULE-4				NON-I	METALL	IC MATE	RIALS	5	09Hours
Polymers –	types of	f po	olyme	er, comm	nodity an	d enginee	ering p	olymers –	Properties and
applications of	o various	th	nermo	setting	and therr	noplastic	p oly	mers (PP,	PS, PVC, PMMA,
PET,PC, PA,	ABS,	PI	PAI,	PPO,	PPS, PE	EEK, PTH	FE, P	olymers –	Urea and Phenol
formaldehydes)- Eng	inee	ring (Ceramics	- Properti	ies and app	olication	ns of Al2O3,	SiC, Si3N4, PSZ and
SIALON -Cor	nposites	Clas	ssifica	ations- M	leta				
Matrix and FR	P – Appl	icati	ions o	of Compo	sites.	-			
MODULE-5			M DI	ECHAN EFORM	ICAL PR	OPERTIE IECHANI	S AND		10Hours
Mechanisms of	plastic o	defo	rmati	on, slip a	and twinni	ng – Type	s of fra	acture – Testi	ng of materials under
tension, compre	ession an	d sł	near l	oads – H	ardness te	ests (Brinel	l, Vick	ers and Rock	well), hardness tests,
Impact test lzod	and chai	rpy,	fatigu	ue and cro	eep failure	mechanisr	ns.		
							r	Fotalhours:	48Hours

Text Book(s):

- 1. Introduction to Physical Metallurgy / Sidney H.Avener.2017
- 2. ATextofEssentialofMaterialsscienceandengineering/DonaldR.Askeland/Thomson.2013
- 3. Material Science and Metallurgy/Dr.V.D.Kodgire,2011

Reference Book(s):

- 1. Science of Engineering Materials /B.K.Agarwal,2017.
- 2. Engineering materials and metallurgy/R. K.Rajput/S.Chand,2015.
- 3. EngineeringMaterials andTheirApplications-R.AFlinnandPKTrojan/ JaicoBooks1995.

PROFESSIONAL ELECTIVE -3

			N	ARAYANAE	NGINEER	RINGCOL	LEGE:GUDU	R
]	FINITE ELEN	MENT ME	THODS	NEC	R BTECH (R21)
Semester	H	ours/ Wee	k	Total hrs	Credits	Max Mark	KS	
	L	Т	Р		С	CIE	SEE	TOTAL
VII	3	0	0	48	3	40	60	100
				COURSE	CONTEN	Γ		
MODULE	- I	IN	TRODU	UCTION TO	FINITE E	LEMENT	METHODS	10 Hrs
Introduction	n to f	inite elem	nent met	thods for solvi	ing field p	roblems, ap	pplications, Stre	ess and equilibrium,
Boundary c	condi	tions, Str	ain-Disp	placement rela	ations, Str	ess- strain	relations for 2	2D and 3D Elastic
problems. I	Poten	tial energ	gy and	equilibrium,	Rayleigh-R	Ritz metho	d, Formulation	of Finite Element
Equations.								
One dimen	siona	l Probler	ns: Fin	ite element r	nodelling	of ID bar	elements coo	rdinates and shape
functions. F	Requi	rements f	or Conv	vergence and 1	Interpolatio	on function	is, Pascal's Tria	angle, Assembly of
global stiff	ness	matrix an	d load	vector. Finite	element e	quations,	Treatment of b	oundary conditions,
Quadratic s	hape	functions.	1 D	ANAT VETE C		EC AND D	DE A MC	O Llac
	-11 ' t m 1 a	ange Stiffe		ANAL ISIS C	JF IKU55	ES AND B	EANIS	9 HIS
Analysis of	f the	ses: Summer	iess Ma	trix for TD tru	iss element	, Stress Ca	iculations and I	Problems with
			S. mt Stiff	naaa Matniy an	dloodwa	ton for 1 D	haam alamant	Harmita shana
Analysis of	Dear	ns: Eleine	mi Suin	ness Matrix an	ia Load ved	CLOF I OF I L	beam element,	Hermite snape
MODULE		ipie proble	ems.	2D	ANALVS	IS		10 Hrs
Finite elem	ont	modeling	of tw	o dimensiona	1 strass	nalveie wi	ith constant st	rain triangles and
treatment of	f bou	ndarycon	ditions	Estimation of	load Vecto	ilalysis wi	itii constant st	rain unangles and
Finite elem	ent r	nodeling (of Δx_{i-y}	symmetric sol	ids subject	ed to avi-	symmetric load	ing with triangular
elements		liouening		symmetric sor	ius subject		symmetric load	ing with triangular
MODULE	IV	OUAI	DRILA'	TERAL ELE	MENTS &	THERM	AL ANALYSIS	9 Hrs
Ouadrilate	ral E	lements:	Isopara	metric. Sub p	arametric a	and Super 1	parametric elem	ents. Modelling of
4 noded and	1 8no	ded quadr	ilateral	elements and s	simple prob	olems. Nun	nerical Integrati	on.
Steady stat	e hea	t transfe	r analys	sis: One dimen	isional ana	lysis of con	nposite slab and	l fin.
	V			DVNA				10 Urs
MODULE	- v			DINA	MIC ANA	L 1 515		10 118
Analysis of	a 1D	uniform	shaft sul	biected to torsi	on – Simp	le problems	8	
Dynamic a	nalvs	sis: Form	ulation	of finite eleme	ent model	element –	mass matrices	evaluation of
Eigen value	s and	dEigen ve	ctors for	r a bar and sha	oft	cicilient	muss murices	, evaluation of
	5 un						Total	Hrs 48 Hrs
	ZS .						10141	
	NJ: handi	roputlo A	ahol: Do	Jagundu Intro	duction to	Einita Elan	nont in Enginaa	ring Deerson
1. 1. U. Dubl	icotic	apulla, A	SHOK DE	negundu, mut		Finite Elen	nent in Enginee.	ring, Pearson
		nis, 4/c, Tho Finito	Flomon	t Mathada in F	Inginogring	Floovior	Buttorworth U	ainomann 2/a 2011
2. S.S.K 3. S.Md	Lao, I Lala	ludeen Fi	nite Fle	ment Analysis	in Engine	2, 130000	Anuradha Publi	cations 2016
REFERENC	ES:	iuuccii, i i		ment 7 marysis	in Engine	Jiiig, 2/0, 1	indiadina i doni	cations, 2010.
1. JNI	Redd	v. An intro	oductior	to the Finite	Element M	ethod. Mc	Graw – Hill. Ne	w York, 1993.
2. R D	Cook	. D S Ma	alkus an	nd M E Plesha	. Concepts	and Appl	ications of Fini	te Element
Analy	vsis.	3/e, John	Wiley, I	New York, 198	89.	-rr*		
3. KJE	athe.	Finite El	ement P	rocedures in F	Engineering	Analysis.	Prentice-Hall, H	Englewood Cliffs.
1982					6	, <i>j~</i> ,	· · · · · · · · · · · · · · · · · · ·	<i></i> ,
4. G.La	kshm	i Narasai	ah, Finit	e Element Ana	alysis, 1/e.	B.S. Public	cations, 2008.	
5. OC2	Zienk	iewicz an	dRLT	aylor, the Fini	te Element	Method, 3	/e. McGraw-Hi	11, 1989.
				-				
1								

			NA	RAYANAEN	GINEER	INGCOL	LEGE:GUDUI	R
			RE	FRIGERATIO	N & AIR	CONDITIO	ONING NE	CR BTECH (R21)
Semester	Ηοι	urs/ Week	<u> </u>	Total hrs	Credits	Max Mark	S	
	L	Т	Р		С	CIE	SEE	TOTAL
VII	3	0	0	48	3	40	60	100
				COURSE C	CONTENT			
MODULE- I			INT	RODUCTION	N TO REF	FRIGERA	TION	10 Hrs
Necessity and Machines, Un Air Refrigera NumericalProl	Al it of atio	oplication fRefrigera n: Bell-C ns - Refrig	as, Car ation, C colemar geratior	not Refrigerat OP, EER, Diff Cycle, Ideal Needs of Air	or, First a ferent Refr and Actu Crafts	and Secon igeration M al Cycles,	d Law Applie Iethods. Open and De	d to Refrigerating ense Air Systems -
MODULE-II		VAPOU	R COM	IPRESSION	REFRIGE	RATION	(VCR) SYSTE	EM 9 Hrs
Vapour Comp Components of Throttling, Ef Various Paran Problems. Ref Secondary Ref	ress of th fect nete rige	on Refri ne Plant - of Sub (ers on Sy erants - E erants- Lu	geratio COP Cooling ystem Desirabl bricant	n (VCR) Sys - Representation and Super H Performance - e Properties - s - Ozone Dep	stem - Bas on of Cyc eating - C Construc Classifica letion - Glo	te Cycle - le On T-S cycle Analyction and tion of Republic Warm	Working Prind and P-h Char ysis - Actual C Use of P-h C efrigerants Used ing- Newer Ref	ciple and Essential ts - Expander Vs. Cycle- Influence of harts - Numerical d - Nomenclature- frigerants.
MODULE-II	I	VAPO	R ABS	ORPTION RI	EFRIGER	ATION (V	AR) SYSTEM	I 10 Hrs
Three Fluid A Basic Compo Electric Refrig MODULE-IV Psychrometric	bsor nent gerat 7 Pro	rption System s-Estimat tor (ii) Vo	stem S7 tion of ortex Tu INTR Proces	FEAM JET R Motive Steam be or Hilsch T ODUCTION sses - Characte	EFRIGE n Require ube. TO AIR (crization of	RATION S d Principle CONDITION Sensible a	SYSTEM: Wor e and Operatio ONING and Latent Heat	Principle and n of: (I) Thermo- 9 Hrs Loads - Need For polar (Europerative)
Cooling),Wind	low	, Split, St	immer	Winter, Year	Round, Ce	entral Air C	Conditioning System	stems.
MODULE-V			A	IR CONDITI	ONING E	QUIPME	NT	10 Hrs
Air Conditioni Human Comfe Comfort Char	ng E ort : t.He	Equipmen Requiren eat Pump	t - Hum nents o - Heat S	idifiers - Dehu f Temperature Sources - Differ	midifiers - , Humidity rent Heat F	Air Filters And Com Pump Circu	, Fans and Blow cept of Effecti its.	vers. ve Temperature,
							Total Ho	ours 48 Hrs
TEXT BOOKS 1. Refriger 2. Basic R	ratio efrig	on and Air geration a	Condit nd Air-(ioning-P.L.Bal Conditioning - 1	laney, 2/e, P.N.Anant	2012. hanarayana	n / TMH, 4/e, 2	013.
REFERENCES 1. Refrige 2. Principl	S: rations o	on and Ai f Refriger	r Condi ation -	tioning / Mano Dossat / Pearso	har Prasad on Educatio	/ New Age on, 4/e, 200	e, 2/e, 2013 17	

NOTE: Tables/Codes: Thermal Engineering Data Book containing refrigerant and Psychrometric property Tables and charts are permitted in Exam

		NARAYANAE	NGINEER	INGCOLL	EGE:GUDUR	
		INDUSTRIA	L ENGINE	ERING	NECI	R BTECH (R21)
Semester	Hours/ Week	Total hrs	Credits	Max Mark	S	
	L T	Р	С	CIE	SEE	TOTAL
VII	3 0	0 48	3	40	60	100
		COURSE	CONTEN	Γ		
MODULE- I		INT	RODUCT	ION		10 Hrs
Concepts of Scientific Ma Hertzberg's T Approach to M to Organizatio	Management-A nagement, Fay Wo factor Th Management.Or n –	dministration and ol's Principles of eory of Motivati ganizational Struc	l Organizat Manageme on, Maslov cturesFuncti	ion – Fund ent, Dougla v's Hierard onal- virtua	ctions of Mana is Mc-Gregor's chy of Human al - Matrix Basic	gement – Taylor's Theory X and Y, needs – Systems c Concepts Related
MODULE-II	-	PLANT LOCAT	TION AND	PLANT L	AYOUT	9 Hrs
Product Life C Study of Rura Principles, Ty	Cycle, Facility L l and Urban Site pes of Layout, l	Location and Layo es, Methods of Sel Line Balancing- si	ut – Factor lection of Pl mple proble	Considerati ant Layout, ems.	ons in Plant Loc Objectives of C	cation, Comparative bood layout,
MODULE-II	Ι	W	ORK STU	DY		10 Hrs
Definition, O	bjectives, Meth	od Study – Step	s Involved	- Various	Types of Proc	ess Charts -Micro
motion and M Equipment, D Sampling - De	Aemo motion S ifferent Method efinition, Steps 2	Studies. Work M ls of Performance Involved, Standard	easurement Rating - A d Time Calc	- Definitio llowances, rulations - A	on, Time Study Standard Time Applications	, Steps involved - Calculation. Work
MODULE-IV	V	INVEN	TORY MO	DDELS		9 Hrs
Deterministic Price Breaks Systems	models- EOQ - Probabilistic	Models – With a Models –Discre	and Without ete Variable	t Shortages e, Continu	Models; Invenous Variable.	tory Models with Inventory Control
MODULE-V		INSPECTION	& QUALI	FY CONT	ROL	10 Hrs
Inspection & Charts: X and Double Sampl	Quality Control I R Charts; P ing Plans- OC	: Statistical Qualit Charts and C Ch Curves. Introducti	ty Control- ' arts. Accep on to TQM-	Techniques tance Samp Quality cir	-Variables and pling Plan - Sin rcles-	Attributes- Control ngle Sampling and
					Total Ho	urs 48 Hrs
TEXT BOOKS 1. Indus 2. Introduc	strial Engineer ction to industri	ring And Manage al Engineering, B	ement By C onnie Board)P Khanna Iman ,Mays	s open press 202	0.
REFERENCE 1. Industri 2. Chary S	S: al Engineering S.N., Production	and management and Operations N	by Rhona, F ⁄Ianagement	Free sage pu , 5 th Edition	blications 2012 n, McGraw Hill	Education, 2017.

			NA	RAYANAE	NGINEER	INGCOLL	EGE:GUDUR	
			AUTO	DMATION	IN MANUF.	ACTURIN	G NECI	R BTECH (R21)
Semester	Hou	rs/Weel	K	Total hrs	Credits	Max Mark	S	
	L	Т	Р		С	CIE	SEE	TOTAL
VII	3	0	0	48	3	40	60	100
				COURSE	E CONTENT			
MODULE- I				IN'	TRODUCT	ION	<u> </u>	10 Hrs
Production Sy	stem	Faciliti	es, Mai	nufacturing	Support sys	stems, Auto	omation in Proc	duction systems,
Automationpri	incip	les & Sti	ategies	Manufacturi	ng Operation	ns, Product/	Production Rela	ationship,
Production con	ncept	S						
MODULE-II	[I	NDUSTRIA	AL CONTR	OL SYSTI	EM	9 Hrs
Basic Elemen	ts of	f an Aut	omated	System, A	dvanced Au	tomation F	unctions & Lev	vels of Automation,
Continuousve	rsus	Discrete	control,	Computer	Process cont	rol, Forms	of Computer Pre-	ocess Control.
MODULE-II	Ι		AUTO	MATED M	ANUFACT	URING SY	ISTEMS	10 Hrs
Components	of a	Manufa	cturing	systems,	Classificatio	n of Manu	facturing Syst	ems, overview of
Classification	Sche	me, Sing	le Stati	on Manned	Workstations	s and Single	e Station Autom	ated Cells.
MODULE-IV	V	GROU	P TEC	HNOLOGY	Y & FLEXI	BLE MAN	UFACTURING	G 9 Hrs
					SYSTEMS			
Part Families	, Pa	rts Class	sificatio	n and codi	ng, Product	ion Flow A	Analysis, Cellu	lar Manufacturing,
Flexible Man	ufact	uring Sy	stems:	What is an	FMS, FMS	Componen	nts, FMS Applie	cations & Benefits,
and FMS Plan	ning	& Imple	ementati	ion Issues.				
MODULE-V	·			INSPECTI	ON TECHN	OLOGIE	S	10 Hrs
Automated Ir	ispec	ction, C	oordinat	te Measurii	ng Machine	s Construc	tion, operation	& Programming,
Software, Ap	plica	tion & I	Benefits	, Flexible I	nspection Sy	ystem, Insp	ection Probes of	on Machine Tools,
Machine Visio	on, C	ptical In	spection	n Technique	s & Non-coi	ntact Non-o	ptical Inspection	n Technologies
							Total Ho	ours 48 Hrs
TEXT BOOKS	5:							
1. Automation.	Prod	luction S	vstems	and Comput	ter Integrated	1 Manufactı	aring: M.P. Gro	over./PE/PHI 2016
2. Computer C	ontro	ol of Mar	nufactur	ing Systems	s: Yoram Ko	ren 2019	0	
REFERENCE	S:			0				
1. CAD/CA	AM/C	CIM, (2 1	nd Editie	on),by Radh	akrishnan ar	nd Subrama	nian, NewAge F	Publications, 2007
2. CAD /	CAM	1/ CIM b	y Radha	akrishnan.20	008		C	
			· · · · ·	1				

3. Automation by W. Buekingham. 1968

COMPOSITE MATERIALS NECR BTECH (R21) Semester Hours/ Week Total hrs Credits Max Marks VII 3 0 0 48 3 40 60 100 COURSE CONTENT MODULE-I INTRODUCTION TO COMPOSITE MATERIALS 10 Hrs Introduction To Composite Materials: Definition, classification and characteristics of composite Materials – fibrous composites, laminated composites, particulate composites. Applications: Automobile, Aircrafts. missiles. Space hardware, Electrical and electronics, Marine, recreational and sports equipment, future potential of composites. Fiber Reinforced Plastic Processing: Lay up and curing, fabricating process, open and closed mould process, MODULE-II MICRO MECHANICAL ANALYSIS OF A LAMINA 9 Hrs Micro Mechanical Analysis of a Lamina: Micro Mechanical Analysis of a Lamina: Introduction, Evaluation of the four elastic moduli by Rule of mixture, Numerical problems. Macro Mechanics of a Lamina: Hooke's law for different types of materials, Number of elastic constants, Two - dimensional relationship of compliance and stiffness matrix. Hooke's law for two-dimensional angle lamina, MODULE-III BIAXIAL STRENGTH 10 Hrs Biaxial Strength Theories Maximum stress theory, Maximum strain theory, Tsai-Hill theory, Tsai, Wu tensor theory, Numerical problems. Macro Mechanical Analysis of Laminate Introduction, code, Kirchoff hypothesis, CL T, A, B, and D matrices (Detailed derivation),
Semester Hours/ Week Total hrs Credits Max Marks VII 3 0 0 48 3 40 60 100 COURSE CONTENT MODULE- I INTRODUCTION TO COMPOSITE MATERIALS 10 Hrs Introduction To Composite Materials: Definition, classification and characteristics of composite Max marks Materials – fibrous composites, laminated composites, particulate composites. Applications: Automobile, Aircrafts. missiles. Space hardware, Electrical and electronics, Marine, recreational and sports equipment, future potential of composites. Fiber Reinforced Plastic Processing: Lay up and curing, fabricating process, open and closed mould process, MODULE-II MICRO MECHANICAL ANALYSIS OF A LAMINA 9 Hrs Micro Mechanical Analysis of a Lamina: Micro Mechanical Analysis of a Lamina: Introduction, Evaluation of the four elastic moduli by Rule of mixture, Numerical problems. Macro Mechanics of a Lamina: Hooke's law for different types of materials, Number of elastic constants, Two - dimensional relationship of compliance and stiffness matrix. Hooke's law for two-dimensional angle lamina, MODULE-III BIAXIAL STRENGTH 10 Hrs Biaxial Strength Theories Maximum stress theory, Maximum strain theory, Tsai-Hill theory, Tsai, Wu tensor theory, Numerical problems. Macro Mechanical Analysis of Laminate Introduction, code, Kirchoff hypothesis, CL T, A, B, and D matrices (Detailed derivation) ,
LTPCCIESEETOTALVII3004834060100COURSE CONTENTMODULE-IINTRODUCTION TO COMPOSITE MATERIALS10 HrsIntroduction To Composite Materials: Definition, classification and characteristics of compositeMaterials – fibrous composites, laminated composites, particulate composites. Applications:Automobile, Aircrafts. missiles. Space hardware, Electrical and electronics, Marine, recreational andsports equipment, future potential of composites. Fiber Reinforced Plastic Processing: Lay up and curing,fabricating process, open and closed mould process,MODULE-IIMICRO MECHANICAL ANALYSIS OF A LAMINA9 HrsMicro Mechanical Analysis of a Lamina: Micro Mechanical Analysis of a Lamina: Introduction,Evaluation of the four elastic moduli by Rule of mixture, Numerical problems. Macro Mechanics of aLamina: Hooke's law for different types of materials, Number of elastic constants, Two - dimensionalrelationship of compliance and stiffness matrix. Hooke's law for two-dimensional angle lamina,MODULE-IIIBIAXIAL STRENGTHBiaxial Strength Theories Maximum stress theory, Maximum strain theory, Tsai-Hill theory, Tsai, Wutensor theory, Numerical problems. Macro Mechanical Analysis of Laminate Introduction, code,Kirchoff hypothesis, CL T, A, B, and D matrices (Detailed derivation),
VII 3 0 48 3 40 60 100 COURSE CONTENT MODULE-I INTRODUCTION TO COMPOSITE MATERIALS 10 Hrs Introduction To Composite Materials: Definition, classification and characteristics of composite Materials – fibrous composites, laminated composites, particulate composites. Applications: Automobile, Aircrafts. missiles. Space hardware, Electrical and electronics, Marine, recreational and sports equipment, future potential of composites. Fiber Reinforced Plastic Processing: Lay up and curing, fabricating process, open and closed mould process, MODULE-II MICRO MECHANICAL ANALYSIS OF A LAMINA 9 Hrs Micro Mechanical Analysis of a Lamina: Micro Mechanical Analysis of a Lamina: Introduction, Evaluation of the four elastic moduli by Rule of mixture, Numerical problems. Macro Mechanics of a Lamina: Hooke's law for different types of materials, Number of elastic constants, Two - dimensional relationship of compliance and stiffness matrix. Hooke's law for two-dimensional angle lamina, MODULE-III BIAXIAL STRENGTH 10 Hrs Biaxial Strength Theories Maximum stress theory, Maximum strain theory, Tsai-Hill theory, Tsai, Wu tensor theory, Numerical problems. Macro Mechanical Analysis of Laminate Introduction, code, Kirchoff hypothesis, CL T, A, B, and D matrices (Detailed derivation) ,
COURSE CONTENTMODULE-IINTRODUCTION TO COMPOSITE MATERIALS10 HrsIntroduction To Composite Materials: Definition, classification and characteristics of compositeMaterials – fibrous composites, laminated composites, particulate composites. Applications: Automobile, Aircrafts. missiles. Space hardware, Electrical and electronics, Marine, recreational and sports equipment, future potential of composites. Fiber Reinforced Plastic Processing: Lay up and curing, fabricating process, open and closed mould process,MODULE-IIMICRO MECHANICAL ANALYSIS OF A LAMINA9 HrsMicro Mechanical Analysis of a Lamina: Micro Mechanical Analysis of a Lamina: Introduction, Evaluation of the four elastic moduli by Rule of mixture, Numerical problems. Macro Mechanics of a Lamina: Hooke's law for different types of materials, Number of elastic constants, Two - dimensional relationship of compliance and stiffness matrix. Hooke's law for two-dimensional angle lamina, MODULE-IIIBIAXIAL STRENGTH10 HrsBiaxial Strength Theories Maximum stress theory, Maximum strain theory, Tsai-Hill theory, Tsai, Wu tensor theory, Numerical problems. Macro Mechanical Analysis of Laminate Introduction, code, Kirchoff hypothesis, CL T, A, B, and D matrices (Detailed derivation),
MODULE-1INTRODUCTION TO COMPOSITE MATERIALS10 HrsIntroduction To Composite Materials: Definition, classification and characteristics of composite Materials – fibrous composites, laminated composites, particulate composites. Applications: Automobile, Aircrafts. missiles. Space hardware, Electrical and electronics, Marine, recreational and sports equipment, future potential of composites. Fiber Reinforced Plastic Processing: Lay up and curing, fabricating process, open and closed mould process,MODULE-IIMICRO MECHANICAL ANALYSIS OF A LAMINA9 HrsMicro Mechanical Analysis of a Lamina: Micro Mechanical Analysis of a Lamina: Introduction, Evaluation of the four elastic moduli by Rule of mixture, Numerical problems. Macro Mechanics of a Lamina: Hooke's law for different types of materials, Number of elastic constants, Two - dimensional relationship of compliance and stiffness matrix. Hooke's law for two-dimensional angle lamina, MODULE-IIIBIAXIAL STRENGTH 10 HrsBiaxial Strength Theories Maximum stress theory, Maximum strain theory, Tsai-Hill theory, Tsai, Wu tensor theory, Numerical problems. Macro Mechanical Analysis of Laminate Introduction, code, Kirchoff hypothesis, CL T, A, B, and D matrices (Detailed derivation),
Introduction To Composite Materials: Definition, classification and characteristics of composite Materials – fibrous composites, laminated composites, particulate composites. Applications: Automobile, Aircrafts. missiles. Space hardware, Electrical and electronics, Marine, recreational and sports equipment, future potential of composites. Fiber Reinforced Plastic Processing: Lay up and curing, fabricating process, open and closed mould process, MODULE-II MICRO MECHANICAL ANALYSIS OF A LAMINA 9 Hrs Micro Mechanical Analysis of a Lamina: Micro Mechanical Analysis of a Lamina: Introduction, Evaluation of the four elastic moduli by Rule of mixture, Numerical problems. Macro Mechanics of a Lamina: Hooke's law for different types of materials, Number of elastic constants, Two - dimensional relationship of compliance and stiffness matrix. Hooke's law for two-dimensional angle lamina, MODULE-III BIAXIAL STRENGTH 10 Hrs Biaxial Strength Theories Maximum stress theory, Maximum strain theory, Tsai-Hill theory, Tsai, Wu tensor theory, Numerical problems. Macro Mechanical Analysis of Laminate Introduction, code, Kirchoff hypothesis, CL T, A, B, and D matrices (Detailed derivation),
Materials– fibrous composites, laminated composites, particulate composites. Applications: Automobile, Aircrafts. missiles. Space hardware, Electrical and electronics, Marine, recreational and sports equipment, future potential of composites. Fiber Reinforced Plastic Processing: Lay up and curing, fabricating process, open and closed mould process,MODULE-IIMICRO MECHANICAL ANALYSIS OF A LAMINA9 HrsMicro Mechanical Analysis of a Lamina: Micro Mechanical Analysis of a Lamina: Introduction, Evaluation of the four elastic moduli by Rule of mixture, Numerical problems. Macro Mechanics of a Lamina: Hooke's law for different types of materials, Number of elastic constants, Two - dimensional relationship of compliance and stiffness matrix. Hooke's law for two-dimensional angle lamina, MODULE-IIII0 HrsBiaxial Strength Theories Maximum stress theory, Maximum strain theory, Tsai-Hill theory, Tsai, Wu tensor theory, Numerical problems. Macro Mechanical Analysis of Laminate Introduction, code, Kirchoff hypothesis, CL T, A, B, and D matrices (Detailed derivation),
Automobile, Aircrafts. missiles. Space hardware, Electrical and electronics, Marine, recreational and sports equipment, future potential of composites. Fiber Reinforced Plastic Processing: Lay up and curing, fabricating process, open and closed mould process, MODULE-II MICRO MECHANICAL ANALYSIS OF A LAMINA 9 Hrs Micro Mechanical Analysis of a Lamina: Micro Mechanical Analysis of a Lamina: Introduction, Evaluation of the four elastic moduli by Rule of mixture, Numerical problems. Macro Mechanics of a Lamina: Hooke's law for different types of materials, Number of elastic constants, Two - dimensional relationship of compliance and stiffness matrix. Hooke's law for two-dimensional angle lamina, MODULE-III BIAXIAL STRENGTH 10 Hrs Biaxial Strength Theories Maximum stress theory, Maximum strain theory, Tsai-Hill theory, Tsai, Wu tensor theory, Numerical problems. Macro Mechanical Analysis of Laminate Introduction, code, Kirchoff hypothesis, CL T, A, B, and D matrices (Detailed derivation),
sports equipment, future potential of composites. Fiber Reinforced Plastic Processing: Lay up and curing, fabricating process, open and closed mould process,MODULE-IIMICRO MECHANICAL ANALYSIS OF A LAMINA9 HrsMicro Mechanical Analysis of a Lamina: Micro Mechanical Analysis of a Lamina: Introduction, Evaluation of the four elastic moduli by Rule of mixture, Numerical problems. Macro Mechanics of a Lamina: Hooke's law for different types of materials, Number of elastic constants, Two - dimensional relationship of compliance and stiffness matrix. Hooke's law for two-dimensional angle lamina,MODULE-IIIBIAXIAL STRENGTH10 HrsBiaxial Strength Theories Maximum stress theory, Maximum strain theory, Tsai-Hill theory, Tsai, Wu tensor theory, Numerical problems. Macro Mechanical Analysis of Laminate Introduction, code, Kirchoff hypothesis, CL T, A, B, and D matrices (Detailed derivation),
MODULE-IIMICRO MECHANICAL ANALYSIS OF A LAMINA9 HrsMicro Mechanical Analysis of a Lamina: Micro Mechanical Analysis of a Lamina: Introduction, Evaluation of the four elastic moduli by Rule of mixture, Numerical problems. Macro Mechanics of a Lamina: Hooke's law for different types of materials, Number of elastic constants, Two - dimensional relationship of compliance and stiffness matrix. Hooke's law for two-dimensional angle lamina, MODULE-IIIBIAXIAL STRENGTH10 HrsBiaxial Strength Theories Maximum stress theory, Maximum strain theory, Tsai-Hill theory, Tsai, Wu tensor theory, Numerical problems. Macro Mechanical Analysis of Laminate Introduction, code, Kirchoff hypothesis, CL T, A, B, and D matrices (Detailed derivation),
MODULE-IIMICRO MECHANICAL ANALYSIS OF A LAMINA9 HrsMicro Mechanical Analysis of a Lamina: Micro Mechanical Analysis of a Lamina: Introduction, Evaluation of the four elastic moduli by Rule of mixture, Numerical problems. Macro Mechanics of a Lamina: Hooke's law for different types of materials, Number of elastic constants, Two - dimensional relationship of compliance and stiffness matrix. Hooke's law for two-dimensional angle lamina, MODULE-IIIBIAXIAL STRENGTH10 HrsBiaxial Strength Theories Maximum stress theory, Maximum strain theory, Tsai-Hill theory, Tsai, Wu tensor theory, Numerical problems. Macro Mechanical Analysis of Laminate Introduction, code, Kirchoff hypothesis, CL T, A, B, and D matrices (Detailed derivation) ,
Micro Mechanical Analysis of a Lamina: Micro Mechanical Analysis of a Lamina: Introduction, Evaluation of the four elastic moduli by Rule of mixture, Numerical problems. Macro Mechanics of a Lamina: Hooke's law for different types of materials, Number of elastic constants, Two - dimensional relationship of compliance and stiffness matrix. Hooke's law for two-dimensional angle lamina, MODULE-IIIBIAXIAL STRENGTH10 HrsBiaxial Strength Theories Maximum stress theory, Naximum strain theory, Tsai-Hill theory, Tsai, Wu tensor theory, Numerical problems. Macro Mechanical Analysis of Laminate Introduction, code, Kirchoff hypothesis, CL T, A, B, and D matrices (Detailed derivation),
Evaluation of the four elastic moduli by Rule of mixture, Numerical problems. Macro Mechanics of a Lamina: Hooke's law for different types of materials, Number of elastic constants, Two - dimensional relationship of compliance and stiffness matrix. Hooke's law for two-dimensional angle lamina,MODULE-IIIBIAXIAL STRENGTHBiaxial Strength Theories Maximum stress theory, Maximum strain theory, Tsai-Hill theory, Tsai, Wu tensor theory, Numerical problems. Macro Mechanical Analysis of Laminate Introduction, code, Kirchoff hypothesis, CL T, A, B, and D matrices (Detailed derivation) ,
Lamina: Hooke's law for different types of materials, Number of elastic constants, Two - dimensional relationship of compliance and stiffness matrix. Hooke's law for two-dimensional angle lamina,MODULE-IIIBIAXIAL STRENGTHBiaxial Strength Theories Maximum stress theory, Maximum strain theory, Tsai-Hill theory, Tsai, Wu tensor theory, Numerical problems. Macro Mechanical Analysis of Laminate Introduction, code, Kirchoff hypothesis, CL T, A, B, and D matrices (Detailed derivation) ,
relationship of compliance and stiffness matrix. Hooke's law for two-dimensional angle lamina,MODULE-IIIBIAXIAL STRENGTH10 HrsBiaxial Strength Theories Maximum stress theory, Maximum strain theory, Tsai-Hill theory, Tsai, Wu tensor theory, Numerical problems. Macro Mechanical Analysis of Laminate Introduction, code, Kirchoff hypothesis, CL T, A, B, and D matrices (Detailed derivation) ,
MODULE-IIIBIAXIAL STRENGTH10 HrsBiaxial Strength Theories Maximum stress theory, Maximum strain theory, Tsai-Hill theory, Tsai, Wu tensor theory, Numerical problems. Macro Mechanical Analysis of Laminate Introduction, code, Kirchoff hypothesis, CL T, A, B, and D matrices (Detailed derivation) ,
Biaxial Strength Theories Maximum stress theory, Maximum strain theory, Tsai-Hill theory, Tsai, Wu tensor theory, Numerical problems. Macro Mechanical Analysis of Laminate Introduction, code, Kirchoff hypothesis, CL T, A, B, and D matrices (Detailed derivation),
tensor theory, Numerical problems. Macro Mechanical Analysis of Laminate Introduction, code, Kirchoff hypothesis, CL T, A, B, and D matrices (Detailed derivation),
Kirchoff hypothesis, CL T, A, B, and D matrices (Detailed derivation),
MODULE-IVMETAL MATRIX COMPOSITES9 Hrs
Metal Matrix Composites: Metal Matrix Composites: Reinforcement materials, types, characteristics and
selection base metals selection. Need for production MMC's and its application. Fabrication Process For
MMC's: Powder metallurgy technique, liquid metallurgy technique and secondary processing, special
tabrication techniques.
MODULE-V FAILURE THEORIES 10 Hrs Failure Theories Missessies of Dailar of Unitive time Leaving Anisotropic Strength and Strength and
Failure Theories: Micromechanics of Failure of Unidirectional Lamina, Anisotropic Strength and Failure Theories Importance of Sheer Strength, Choice of Failure Criterie, Examples
Fanure Theories, importance of Shear Strength, Choice of Fanure Criteria, Examples.
Total Hours 48 Hrs
TEXT BOOKS:
1. K.K. Chawla, "Composite Materials", Springer-Verlag, New York. (1998),
2 M = 11 - 11 M = 11 - 11 - 11 - 11 - 11
2. Madhujit Mukhopadhya, "Mechanics of composite materials and structures", Universities Press 2004.
2. Madhujit Mukhopadhya, "Mechanics of composite materials and structures", Universities Press 2004.
 2. Madhujit Mukhopadhya, "Mechanics of composite materials and structures", Universities Press 2004. REFERENCES: B.T. Astrom "Manufacturing of Polymer Composites" Chapman & Hall (1997), 1. Stuart M.
 Madhujit Mukhopadhya, "Mechanics of composite materials and structures", Universities Press 2004. REFERENCES: B.T. Astrom "Manufacturing of Polymer Composites", Chapman & Hall., (1997), 1. Stuart M Lee L JanGray Miltz "Reference Book for Composites Technology" CRC press. (1989)
 Madhujit Mukhopadhya, "Mechanics of composite materials and structures", Universities Press 2004. REFERENCES: B.T. Astrom "Manufacturing of Polymer Composites", Chapman & Hall., (1997), 1. Stuart M Lee, J. IanGray, Miltz, "Reference Book for Composites Technology", CRC press. (1989), Frank I. Matthews and P. D. Pawlings. "Composite Materials: Engineering and Science", Taylor
 Madhujit Mukhopadhya, "Mechanics of composite materials and structures", Universities Press 2004. REFERENCES: B.T. Astrom "Manufacturing of Polymer Composites", Chapman & Hall., (1997), 1. Stuart M Lee, J. IanGray, Miltz, "Reference Book for Composites Technology", CRC press. (1989), Frank L Matthews and R D Rawlings, "Composite Materials: Engineering and Science", Taylor and Empire (2006)
 Madhujit Mukhopadhya, "Mechanics of composite materials and structures", Universities Press 2004. REFERENCES: B.T. Astrom "Manufacturing of Polymer Composites", Chapman & Hall., (1997), 1. Stuart M Lee, J. IanGray, Miltz, "Reference Book for Composites Technology", CRC press. (1989), Frank L Matthews and R D Rawlings, "Composite Materials: Engineering and Science", Taylor and Francis.(2006),
 Madhujit Mukhopadhya, "Mechanics of composite materials and structures", Universities Press 2004. REFERENCES: B.T. Astrom "Manufacturing of Polymer Composites", Chapman & Hall., (1997), 1. Stuart M Lee, J. IanGray, Miltz, "Reference Book for Composites Technology", CRC press. (1989), Frank L Matthews and R D Rawlings, "Composite Materials: Engineering and Science", Taylor and Francis.(2006), D. Hull and T.W. Clyne, "Introduction to Composite Materials", Cambridge University Press. (1996)
 Madhujit Mukhopadhya, "Mechanics of composite materials and structures", Universities Press 2004. REFERENCES: B.T. Astrom "Manufacturing of Polymer Composites", Chapman & Hall., (1997), 1. Stuart M Lee, J. IanGray, Miltz, "Reference Book for Composites Technology", CRC press. (1989), Frank L Matthews and R D Rawlings, "Composite Materials: Engineering and Science", Taylor and Francis.(2006), D. Hull and T.W. Clyne, "Introduction to Composite Materials", Cambridge University Press. (1996)
 Madhujit Mukhopadhya, "Mechanics of composite materials and structures", Universities Press 2004. REFERENCES: B.T. Astrom "Manufacturing of Polymer Composites", Chapman & Hall., (1997), 1. Stuart M Lee, J. IanGray, Miltz, "Reference Book for Composites Technology", CRC press. (1989), Frank L Matthews and R D Rawlings, "Composite Materials: Engineering and Science", Taylor and Francis.(2006), D. Hull and T.W. Clyne, "Introduction to Composite Materials", Cambridge University Press. (1996) M.R. Piggott, "Load Bearing Fibre Composites", Pergamon press, Oxford. (1998)

	NARAYANAENGINEERINGCOLLEGE:GUDUR										
	INTELLI	GENT MANUE	ACTURING	SYSTEMS	NEO	CR BTECH (R21)					
Semester	Hours/ Week	Total hrs	Credits	Max Mark	S						
	L T	Р	С	CIE	SEE	TOTAL					
VII	3 0	0 48	3	40	60	100					
		COURS	E CONTEN	[
MODULE- I	COMPU'	TER INTEGRA	ATED MAN	UFACTUR	ING SYSTEM	S 10 Hrs					
Computer inte	egrated manufa	cturing systems	– structure	and function	onal areas of C	IM system - AD,					
CAPP,CAM,	CAQC, ASRS a	and advantages of	of CIM								
Manufacturing communication systems – MAP/TOP OSI model, Intelligent manufacturing – system											
components, system architecture and data flow,											
MODULE-II	-	ARTIFIC	CIAL INTEI	LIGENCE	E	9 Hrs					
Components	of knowledge	based systems	-Machine le	earning – o	concept of artit	ficial intelligence,					
conceptual lea	arning, artificia	il neural networ	ks -biologic	al neuron,	artificial neuror	n, types of neural					
networks, app	lications in mar	ufacturing									
	T	DD (10.11					
MODULE-II		PRO	CESS PLA	NNING		10 Hrs					
Automated pr	Automated process planning - variant approach, generative approach, expert systems for process										
planning, teature recognition, phases of process planning Knowledge Based System for Equipment											
Selection (KBSES) – Manufacturing system design, equipment selection problem,											
MODULE-IV GROUP TECHNOLOGY 9 Hrs											
Group techno	logy: models a	nd algorithms -	- visual met	nod, coding	method, cluste	r analysis method,					
matrix format	ion – similarity	coefficient met	thod, sorting-	based algor	rithms, bond en	ergy algorithm, cost					
based method,											
MODULE-V	KN	OWLEDGE B.	ASED GRO	UP TECHN	IOLOGY	10 Hrs					
Knowledge b	ased group to	echnology - g	roup techno	logy in au	itomated manu	facturing system,					
structure of k	nowledge base	d system for gr	oup technolo	gy (KBSG	T) – data base,	knowledge base,					
clustering algo	orithm		*		,	C I					
					Total H	Irs 48 Hrs					
TEXTBOOKS	:										
1. Andre Kusaic	e, " Intelligent N	Manufacturing S	ystems", PHI	1989							
2. Hamid R. Pa	rsaei and Moha	ammad Jamshidi	i, "Design an	d Implemer	ntation of Intelli	gent					
ManufacturingS	Systems", PHI, 2	2009									
	~										
REFERENCE	5:		a .		T	6 · · · · · · · · · · · · · · · · · · ·					
I. Mikell P. G	roover, "Autom	ation, Productio	on Systems an	d Computer	r Integrated Ma	nufacturing", 8th					
edition, PHI, 20	108. 		» DIH 2000								
2. Yagna Naray	ana, "Artificial	iveurai Network	s, PHI, 2009	<i>י</i> .							

		P	ROF	ESSIO	NAL E	LECI	CIVE- 4			
			NARAY	ANAENGIN	NEERING	COLLEG	E::GUDUR	2		
			COMP	UTATIONA	L FLUID I	DYNAMIC	S	NECF	R BTECH (R21)	
Semester	Hour	s/ Wee	k	Total hrs	Credits	Max Mark	TS			
	L	Т	Р		С	CIE	SEE	Т	OTAL	
VII	3	0	0	48	3	40	60	10	00	
MODIU	.			TAT		RSE CONT	ENT		10 11	
MODUL	E- I		- f (1 4		TRODUC	TION		1	10 Hrs	
Introduction:	Illus	tration	of the of	CFD approac	n, CFD a	is an engi	neering ana	lysis t Doroby	ool, Review of	
and Elliptice	quatio	n. CFE	applicat	ion in Chemi	cal Engine	ering. CFD) software pa	ckages	s and tools.	
MODUL	E-II		PRINCI	PLES OF SO	LUTION	OF THE	GOVERNIN	NG	9	
		_			EQUATIO	ONS	00,221		Hrs	
Principles of Solution of the Governing Equations: Finite difference and Finite volume Methods,										
Convergence	, Co	nsisten	cy, Erro	or and Stabi	ility, Acc	uracy, Bo	undary cor	ditions	s, CFD model	
formulation										
MODULE-III MESH CENEDATION 10 Um										
Mosh gapara	MODULE-III MESH GENERATION 10 Hrs Mash concertion Structured and Hartmark and Cold line									
Mesh generation: Overview of mesh generation, Structured and Unstructured mesh, Guideline on mesh quality and design Mesh refinement and adaptation. Solution Algorithms: Discretization										
mesn quality and design, Mesn refinement and adaptation. Solution Algorithms: Discretization schemes for pressure, momentum and energy equations. Explicit and implicit Schemes, Eirst order										
upwind sche	eme. s	second	order u	pwind schem	ne. OUIC	K scheme.	SIMPLE.	SIMPI	LER and MAC	
algorithm										
MODULI	E-IV			CF	D SOLU	ΓΙΟΝ			9 Hrs	
CFD Solution	n Pro	cedure:	Problem	setup – crea	tion of geo	ometry, me	sh generatio	n, sele	ction of physics	
and fluid pro	operti	es, initi	alization	, solution con	ntrol and	convergenc	e monitorin	g, resi	ults reports and	
visualization.										
MODUL	E-V			C	ASE STU	DIES			10 Hrs	
Benchmarkin	ng. v	alidatio	n. Simu	ulation of C	CFD prob	lems by	use of ge	neral	CFD software.	
Simulation o	fcoup	led hea	t, mass a	nd momentur	n transfer	oroblem	450 01 50	norui	cr D soltmare,	
	· · · · r		.,							
							Tota	al Hour	rs 48 Hrs	
ТЕХТ ВООК	S:									
1 .S. V. Patank	ar. Ni	umerica	l Heat T	ransfer and Fl	uid Flow,	McGraw-H	Hill. 1980			
	,					~		• •		
2. John D. And	lerson	Jr, Co	mputation	nal Fluid Dyn	amics, Mc	Graw Hill	Book Compa	any 20	01	
DEFEDENCE	76.									
1 John C Tan	nehill	Dale	Ander	son and Richa	ard H. Plet	wher Comr	utational Flu	iid Me	chanics and Heat	
Transfer Tavle	or &F	rancie	2021			na, comp			chames and ricat	
riansier, rayit		ancis.	2021							

			NA	RAYANAEN	GINEER	INGCOLI	EGE:GUDUR				
	HYDRAULIC & PNEUMATICS SYSTEMS NECR BTECH (R21)										
Semester	Hour	s/Week		Total hrs	Credits	Max Mark	S				
	L	Т	Р		С	CIE	SEE	TOTAL			
VII	3	0	0	48	3	40	60	100			
				COURS	E CONT	ENT					
MODULE- I		FLUID	POW	ER PRINICI	PLES AN	D HYDRA	ULIC PUMPS	10 Hrs			
Introduction t	o Flui	d power	– Adv	antages and A	Application	ns – Fluid J	power systems -	- Types of fluids –			
Properties of	tluids	and sele	ction -	- Basics of Hy	draulics -	- Pascal's L	aw – Principles	of flow – Friction			
loss – Work,	Classification – Construction, Working, Design, Advantages, Disadvantages, Performance, Selection										
criteria of Linear and Rotary – Fixed and Variable displacement pumps –											
criteria of Linear and Kotary – Fixed and variable displacement pumps –											
MODULE-II	MODULE-II HYDRAULIC ACTUATORS AND CONTROL COMPONENTS 9 Hrs										
Hydraulic Ad	ctuato	rs: Cyli	nders	– Types and	construc	ction, Appl	lication, Hydra	ulic cushioning –			
Hydraulic mo	tors –	Control	Comp	onents : Direct	ion Contr	ol, Flow co	ntrol and pressu	ire control valves –			
Types, Const	ructio	n and O	peratic	on – Servo an	d Propor	tional valve	es – Applicatio	ns – Accessories :			
Reservoirs, Pr	ressure	e Switch	es – A	Applications –	Fluid Po	wer ANSI	Symbols –				
MODULE-III HYDRAULIC CIRCUITS AND SYSTEMS 10 Hrs											
Accumulators, Intensifiers, Industrial hydraulic circuits – Regenerative, Pump Unloading, Double-											
Control Hydr	re Int	transmi	Alf-0	Flectro hydrau	lie circuit	procation, s	Synchronization	, rall-sale, speed			
	V PN		5510Π, 1 ΓΙ<u></u>Γ Δ	ND FL FCTR	O PNEL	MATIC SY	Zar fryuraufic ser ZSTEMS	9 Hrs			
Properties of	<u>ir – F</u>	Perfect G	as Lay	$v_{s} = Compress$	or $-$ Filte	rs Regulate	or Lubricator N	Juffler Air control			
Valves, Ouick	Exha	aust Valv	ves. Pi	neumatic actua	tors. Des	ign of Pneu	matic circuit –	Cascade method –			
Electro Pneur	natic	System	– Ele	ments – Lado	ler diagra	um – Probl	ems, Introducti	on to fluidics and			
pneumatic log	ic circ	cuits.			U		,				
MODULE-V	TF	ROUBLI	E SHO	OTING AND	APPLIC	ATIONS		10 Hrs			
Installation, S	Selecti	on, Mai	ntenan	ce, Trouble S	Shooting	and Remed	lies in Hydrau	ic and Pneumatic			
systems, Dest	ign of	f hydrau	lic cir	cuits for Dril	ling, Plar	ning, Shap	oing, Surface g	rinding, Press and			
Forklift applie	cations	s. Desigi	n of Pr	eumatic circu	its for Pic	k and Place	e applications a	nd tool handling in			
CNC Machine	e tools	-Low c	cost Au	itomation – Hy	draulic a	nd Pneumat	ic power packs.				
							T (1 I	40.11			
							I otal H	ours 48 Hrs			
τεντ ροοκά											
1. Hydrau	. lic and	d Pneum	atic Co	ontrol by K Sha	ummuga S	Sundaram, S	S. Chand & Co.	Ltd., New Delhi			
2006				2	U	,					
2. Hydrau Ltd.,De	lics ar lhi.19	nd Hydra 94	ulic M	achinery by D	r. Jagadisl	h Lal; Metro	opolitan Book C	ompany			
 Hydraulic and Pneumatic Power and Control Design, Performance and Application by Yeaple, McGraw Hill, New York. 1996 											
DEDEDENCE	<u>n.</u>										
KEFERENCE	5:										

Anthony Esposito, "Fluid Power with Applications", Pearson Education 2005.
 Majumdar S.R., "Oil Hydraulics Systems- Principles and Maintenance", Tata McGraw-Hill, 2001.

NARAYANAENGINEERINGCOLLEGE:GUDUR										
			S	SURFACE I	ENGINEE	RING	NEO	CR BTECH (R21)		
Semester	Hour	s/Week		Total hrs	Credits	Max Mark	íS			
	L	Т	Р		С	CIE	SEE	TOTAL		
VII	3	0	0	48	3	40	60	100		
				COURSE	CONTENI			4.0.77		
MODULE- I				INT	RODUCTI	ION		10 Hrs		
Introduction (to stru	ucture of	solids	: structure,	morpholog	y, energy,	types and class	sification Surface		
dependent eng	gineer	ing prop	erties:	physical, cl	nemical an	d mechani	cal –their defin	nition, origin and		
1mportance			~							
MODULE-II			<u> </u>	TRENGTH	ENING M	ECHANIS	M	9 Hrs		
Common surfa	ice in	itiated en	gineeri	ng degradati	on/failures	and their r	nechanism: wea	r, friction, fatigue,		
corrosion, oxi	datio	n Importa	ance o	f surface e	ngineering	(SE), Cla	ssification and	scope of surface		
engineering of	alloy	s and con	nponer	nts, Methods	and princi	ples of sur	face modification	on of materials;		
Strengthening	Strengthening mechanism of engineering materials – metallic and non-metallic									
MODULE-III SURFACE COATING TECHNIQUES 10 Hrs										
Conventional	surfa	ce modifi	cation	methods: sh	ot peening,	flame and	l inductionharde	ening, carburizing,		
nitriding, diffusion aided surface alloying Surface coating techniques by chemical/electro-chemical										
routes:electro/electroless deposition, anodizing, galvanizing										
	MODULE-IV ADVANCED SURFACE MODIFICATION METHODS 9 Hrs									
Advanced surface modification methods: laser plasma ion and electron beamassisted surface engineering										
Advanced surface modification methods: laser, plasma, ion and electron beamassisted surface engineering										
MODULE-V			A	ADDITIVE	MANUFA	CTURINO	r F	10 Hrs		
Additive man	ufactu	uring vis-	à-vis s	ubtractive n	nanufacturi	ng, Advan	tages andchalle	nges, recent trend		
and innovatio	n, las	ser assiste	d addi	tive manufac	cturing ofp	olymers, n	netals and alloy	s, characterization		
and testing										
							Total H	ours 48 Hours		
TEXT BOOK										
1 Surface Engi	neerin	ng for We	ar Resi	stances (Intr	oduction an	d classifica	ation of Wear)	Bv·K G		
Budinski Pre	ntice	Hall Eng	lewood	Cliffs 1988	R		thom or wear,	<i>Dy</i> . R .O.		
2. Corrosion En	ginee	ring (clas	sificati	on of Corros	ion). Bv: M	I.G. Fontan	a. M.C. Graw	Hill, N. York.		
1987	8				,			1111, 1 11 1 0111,		
3. Introduction	to Sur	face Engi	neering	g and Function	onally Engi	neered Mat	terials, by Peterl	Martin, WILEY,		
2011		C			• •		•			
REFERENCE	S:									
1. Surfac	e Eng	ineering of	of Meta	ls: Principle	s, Equipme	nt, Technol	logies,			
by:TadeuszBurakowski, TadeuszWierzchon, CRC Press, 1988										
2. Surface Engineering for Corrosion and Wear Resistance, by IR Davis, ASMInternational 2001										
3. Additiv	e Mai	nufacturir	ig hv A	ndreas Gebb	ardt and Ia	n-Steffen F	lötter, Springer	2016		
4. Additiv	 Additive Manufacturing by Andreas Gebnardt and Jan-Steffen Hotter, Springer, 2016 Additive Manufacturing of Metals by John O. Milewski, Springer, 2017 									
L										

			Ν	ARAYANAE	NGINEE	RINGCOL	LEGE:GUDU	JR	
		PROI	DUCTIO	ON AND OPE	RATION	S MANAGI	EMENT NEC	R BTECH (R21)	
Semester	Ho	ours/ Weel	K	Total hrs	Credits	Max Mark	S		
	L	Т	Р		С	CIE	SEE	TOTAL	
VII	3	0	0	48	3	40	60	100	
				COURSE C	CONTENT	-			
MODULE-	I			INTE	RODUCT	ION		10 Hrs	
Introduction	n: (Operations	Mana	gement – D	efinition,	Objectives	, Types of H	Production System,	
Difference b	etwe	en OM &	PM, F	listorical Deve	elopment	of Operatio	ns Managemer	it, Current Issues in	
Operation M	anag	gement, Pr	oduct E	Design – Requi	rements o	f Good Pro	duct Design, Pi	oduct Development	
– Approache	es, C	oncepts in	n Produ	ict Developme	ent, Stand	lardization,	Simplification	, Speed to Market,	
Introduction	to C	oncurrent	Engine	ering.					
MODULE-I	Ι			FOR	RECASTI	NG		9 Hrs	
Forecasting	: Inti	roduction,	Statisti	cal Forecasting	g Techniqu	ues, Moving	g Average, Exp	onential Smoothing	
Technique, E	Error	s in Forec	asting a	nd Evaluation	of Foreca	sting Techn	iques.		
MODULE-I	II		VALUI	E ENGINEER	ING AN	D PLANT I	LAYOUT	10 Hrs	
Value Engin	neeri	ing and P	lant La	yout: Value E	ngineering	g – Objectiv	ves, Types of V	alues, Function and	
Cost, Produc	ct Li	ife Cycle,	Steps	in Value Engi	ineering,	Methodolog	gy in Value E	ngineering -Facility	
Location and	l Lav	vout – Fac	tor Cor	siderations in	Plant Loc	ation, Com	parative Study	of Rural and Urban	
Sites. Metho	ds o	f Selection	n of Pla	ant Lavout. O	biectives	of Good lay	vout. Principles	s. Types of Layout.	
Line Balanci	ng					·····.	, ,	·, -, -, -, -, -, -, -, -, -, -, -, -, -,	
MODULE-	ING IN		Δ(CORFGATE	PLANNI	NG AND N	/RP	9 Hrs	
	lanı	ning and	MRP	Aggregate Plan	$\frac{1}{1}$ $\frac{1}$	efinition D	ifferent Strateg	ies Various Models	
of Aggregate Planning- Transportation and Graphical Models, Master scheduling, Material Requirement									
Planning (M	RP)-	- Termino	logy, T	vpes of Demar	nds, Inputs	s to MRP.	Fechniques of 1	MRP, Benefits and	
Drawbacks	ofĺ	MRP, Jus	t in T	ime (JIT) Ph	ilosophy,	Kanban S	ystem, , Pull	Systems vs. Push	
Systems, Red	quire	ements for	Implen	nentation of JI	Γ, JIT Pro	duction Pro	cess, Benefits of	of JIT.	
MODULE-	V			SCI	HEDULI	NG		10 Hrs	
	D 1	• •	6.0.1	1.1. 0.1	1.12 0.		1 1' 1 T		
Scheduling:	Poli	cies, Type	es of Scl	heduling, Sche	duling Sti	ategies, Sci	neduling and L	bading Guidelines,	
Forward and		kward Sch	neduling	g, Grant Charts	s, Priority	Decision Ri	iles, Flow Shop	Scheduling, Job	
SnopSchedu	ling,	Line of B	alance.				T 1 1 1		
	-						Total Hours	48 Hrs	
TEXT BOOK	с г	a 1a	· D V			· · ·	r (oti	ויז זגי זיין	
I. I BUI IndiaD	a E	.S. and Sai	rin K.K. Dalhi - 2	, Modern Prod	luction / U	perations N	lanagement, 8	Edition, wiley	
2 Panner	vt. 1 reelu	$am \mathbf{R} \mathbf{Pr}$	Denn, 2	and Operatio	ne Manaa	ement 3 rd F	dition PHILE	arning Pyt Itd	
NewD	elhi,	, 2012.	Junction		ns wanag	ciliciti, 5° L		arning I vt. Ltd.,	
DEFEDENCI	76.								
1. 1. Jam	es L	. Riggs, Ji	m Rigs.	Production Sy	vstems: Pl	anning. An	alvsis and Cont	rol. 4 th Edition.	
Wavel	Land	Press, 19	92.) 50011101 1 1			101, 1 <i>Da</i> 101011,	
2. Chary S.N., Production and Operations Management. 5 th Edition. McGraw Hill Education. 2017.									
3. Richard B.Chase, Ravi Shankar, Robert Jacobs F., Operations and Supply Chain Management, 15th									
Edition	n, M	CGraw Hi	II Educa	ation, 2018.	• The	nd Dual-1-		MaCrow	
4. Joseph HillEd	lucat	ion, 1987	peration	is managemen	t-1 neory a	ing problem	is, 3 Edition, 1	wcoraw	
5. Steven	n Nal	hmias, Tav	va Lenn	on Olsen, Proc	luction an	d Operation	Analysis: Stra	tegy –	
Qualit	y –A	analytics –	Applic	ations, 7 th Edit	tion, Wave	eland Press	Inc., 2015.		

			N	ARAYANA	ENGINEER	RINGCOL	LEGE:	GUDUI	R
				AUTOMAT	TION & ROB	OTICS		NECR	BTECH (R21)
Samastar	Нош	·s/Waal	7	Total bra	Credite	Max Mark	- C		
Semester	T		D		Creans		ی ۲	- F	ΤΟΤΑΙ
VII	2	0	0	18	3	40	51	0	101AL
V11	5	U	U		P F CONTENT	40	0	0	100
MODULE- I						ON			10 Hrs
Introduction	• A11+	omation	in pro	duction syst	am need ty	nes Princi	nles and	Stratoo	ries of automation
levels of auto	• Auto matio	n hasic	elemer	uts of an aut	omated syste	m hardwa	re comp	onents f	for automation and
process contro	niacio ni me	chanica	l feeder	s honners	orienters hig	th speed au	tomatic i	nsertion	n devices
Automated f	flow	lines&	transfei	r mechanisi	ns fundame	ntals of tr	ansfer I	ines f	low lines with or
without buffer	r stora	nge	il unisitei	meenamor	ins, rundume	intuis of ti		, inco, in	iow miles with or
MODULE-II	[AS	SEMB	LY LINE B	BALANCING	G AND AU	TOMA	ГED	9 Hrs
				MANUF	ACTURING	SYSTEM			
Assembly Lin	ne Ba	alancing	g: Asse	mbly proce	ss and system	ns assembl	y line, l	ine bala	ancing algorithms,
ways of impro	oving	line bala	ance, flo	exible assem	ibly lines.	o .	6		
Material ha	ndling	g and	Identii	fication Te	chnologies:	Overview	of auto	omatic	material handling
systems, princ	ciples	and de	sign co	nsideration,	material trai	nsport syste	ems, stor	age sys	stems, overview of
automatic idei		tion me	thods.	toma Com		anifi anti an			of months strains
systems manufacturing cells GT and cellular manufacturing FMS and its planning and									
implementation	nurac	turing	cens,	OT allu (cenulai mai	luracturing	, гмз	and	its planning and
)]]. [T				ROBOTIC	S			10 Hrs
Introduction	• Brid	of histo	ry of	robote class	ification of	robot fun	ctional	lina dia	aram degrees of
freedom. Elements of robot - types and its functions, factors to be considered in the design of grippers									
Robot Actuators And Feedback Components: Actuators Preumatic Hydraulic actuators Floatric									
& Stepper mot	tore	ompari	cubaci	sition senso	rs potentior	notors rosc	lvore or	anders	velocity sensors
	D.		5011. F U	SILIOII SCIISO	rs - potention		nveis, ei	icouers	- velocity sensors,
Tactile sensor	s, Pro	ximity s	ensors					TOD	0.11
MODULE-I	V .		EMAT	ICS AND L	<u>DYNAMICS</u>	OF A MA	NIPULA	ATOR	9 Hrs
Manipulator	Kine		Home	ogenous trai	nsformations	as applica	ble to the	anslatio	on, rotations- D-H
notation, Forw	ard al	nd inver	Se kine	matics.		la antiana i	T	· Evi	lan and Nametan
Fulerformatio	Dyn	amics:	Differe	ential transi	ormations, J	acodians,	Lagrang	e - Eu	ler and Newton -
MODULE-V	ons 7	P	OROT	PROCRA	MMING AN		[~] ATIO	NC	10 Hrs
Robot Progr	romm	ing: N	lethods	of progra	mming r	D AII LI	$\frac{1}{2}$ and f	aaturas	of programming
languages so	ftwar	e nacka	ictilous	roblems wi	th program	ning langu	ares M	otion r	of programming
motion joint i	inteor	e packa atedmot	ion str	aight line m	otion: avoida	nce of obst	ages. M acles	outon p	an control- sicw
motion, joint i	megi	ateamo	.1011, 50						
							ſ	Fotal H	ours48 Hrs
TEXT BOOK									
1. Mikell	P.Gro	oover, A	Automa	tion, Produc	ction System	s and Com	puter In	itegrated	d Manufacturing-
Pearson	n Eduo	cation.5	/e, 2009	Э.					
2. Mikell	P. Gro	oover ar	d Mitcl	hell Weiss, I	Roger N. Nag	gel, Nichola	as G.Odr	ey, Indu	ustrial Robotics
—McG	iraw H	Hill, 198	6.						
	~								
REFERENCE	S:	a ••	D • -					-	
I. <u>S. R. D</u>	eb &	<u>Sankha</u>	Deb, F	Robotics Tec	chnology and	I Flexible A	utomati	on, Tata	a McGraw-Hill
Educati	10n, 2	009.	1	Dalar	1 1 711				
2. R K Mittal and I J Nagrath, Robotics and control, Illustrated Edition, Tata McGraw Hill India 2003.									

- Saeed B. Niku, Introduction to Robotics Analysis, System, Applications, 2/e, John Wiley & Sons, 2010.
- 4. Richard D. Klafter, Thomas Robotic Engineering an integrated approach, PHI publications 1988.

NARAYANAENGINEERINGCOLLEGE:GUDUR									
				NANO	MATER	RIALS	NEO	CR BTECH (R21)	
Semester	Hours	/ Week		Total hrs	Credits	Max Mark	KS		
	L	Т	Р		С	CIE	SEE	TOTAL	
VII	3	0	0	48	3	40	60	100	
				COUR	SE CONT	ENT			
MODULE- I	~			INTE	RODUCT	ION		10 Hrs	
Introduction:	Scope	of nan	o scien	ce and nano	tecnology	, nano sci	ence in nature,	classification of	
nanostructured	l mater	rials, im	portanc	e of nano ma	terials. Sy	nthetic Me	thods: Bottom-U	Jp approach:- Sol-	
gel synthesis,	micro	emulsio	ns or r	everse micell	es, co-pre	cipitation	method, solvo t	hermal synthesis,	
nyurotherman synthesis, microwave nearing synthesis and sono chemical synthesis.									
MODULE-II				TOP-DO	WN APP	ROACH		9 Hrs	
Top-Down ap	proach	n:- Iner	t gas c	ondensation,	arc disch	arge meth	od, aerosol syr	nthesis, plasma arc	
technique, ion	sputt	ering, l	aser at	olation, laser	pyrolysis	s, and che	mical vapour o	deposition method,	
electrodepositi	ion me	thod, hi	gh ener	gy ball millin	g.				
MODULE-II	I		ТЕСН	NIQUES FO	K CHAK	ACTERIZ	ATION	10 Hrs	
Diffraction technique, spectroscopy techniques, electron microscopy techniques for the									
characterization of nanomaterials, BET method for surface area analysis, dynamic light scattering for									
particle size de		hation						0.11	
WODULE-IV STUDIES OF NANU-STRUCTURED MATERIALS 9 Hrs Sumthesis granuties and emplications of the following manuature is in following manuature is in the second secon									
Synthesis, pro	perties	and ap		ns of the follo	wing nan	omaterials,	fullerenes, carb	on nanotubes, core-	
shell nanopart	icies, r	nanosne	lls, selfa	assembled mo	onolayers,	and monol	ayer protected i	netal nanoparticles,	
manocrystallin materials ther	e male	riais, in	torials	nanoparticles	tical mate	rials liquid	crystals	to nanomagnetic	
MODULE-V			teriais,			NS	ciystais.	10 Hrs	
Engineering	Applic	ations	of Na	nomaterials_a	viation a	nd snace	chemical ind	ustry automotive	
engineering h	ilding	consu	mer ele	ctronics- fuel	cells bat	teries sens	ors	usiry, automotive	
engineering, or	inaing	, consu		ettomes ruer	cens, out	terres, sens	Total	Hrs 48 Hrs	
							Total	1113 40 1113	
ΤΕΧΤ ΒΟΟΚ	·								
1 Nanom	. Iaterial	ls- Svntl	hosis P	roperties and	Annlicati	ons Edited	hy A S Edelste	in and R C	
L. Nanon	rata Ir	nstituta	of Phys	ics Publishing		1008 (nand	by A.S. Edelste	in and N.C.	
Camina	τατα, π	istitute	OFFILYS		, LUHUUH,	1990 (hahe			
2 The Phy	sics ar	nd Chem	nistry of	NanoSolids h	ov Frank I	Owens and	d Charles P. Poo	le Ir	
Wiley-I	ntersci	ence. 20			, a			,	
REFERENCES	3.								
1 Nano	s. chemis	strv·Δ C	hemica	l Annroach to	Nanomat	erials hy G	$\int O_{7}$ in and Δ	senault	
RSCP	ıhlishiı	ng 200 ⁴	5		Nulloniu		. 02111 0110 7 7	Schuurt,	
2 Nano	nhysic	s and Na	anotech	nology: An In	troductio	n to Moder	n Concents in N	anoscience Edward	
	f Wilo		2nd Rer	rint (2005)					
2.000	.,	, ven,		2005)					
L									

PROFESSIONAL ELECTIVE-5

	NARAYANAENGINEERINGCOLLEGE:GUDUR										
				DE	ESIGN OF H	HEAT EXC	HANGERS	NECR	BTECH (R21)		
Semeste	er	Hours	s/Weel	K	Total hrs	Credits	s Max Mark	KS			
		L	Т	Р		С	CIE	SEE	TOTAL		
VII		3	0	0	48	3	40	60	100		
					COURS	SE CONTH	ENT				
MOD	ULE- I				IN	TRODUC	TION		10 Hrs		
Types	Types of heat exchangers, shell and tube heat exchangers – regenerators and recuperators - Temperature										
Manufacturers Association (TEMA)											
Manufacturers Association (TEMA)											
MOD	ULE-II		PR	OCESS	DESIGN	OF HEAT	EXCHANG	ERS	9 Hrs		
Heat th	ransfer o	correla	ations,	Overall	heat trans	fer coeffici	ent, analysis	of heat exchan	gers – LMTD and		
effectiv	veness n	nethod	l. Sizin	g of fin	ned tube he	at exchange	ers, U tube he	eat exchangers,	Design of shell and		
tube heat exchangers, fouling factors, pressure dron calculations											
			,	-8							
MOD	ULE-II	Ι			ST	RESS ANA	LYSIS		10 Hrs		
Stress in tubes – header sheets and pressure vessels – thermal stresses shear stresses - types of failures											
buckling of tubes flow induced vibration											
MODULE-IV COMPACT AND PLATE HEAT EXCHANGER 9 Hrs											
Types- Merits and Demerits- Design of compact heat exchangers plate heat exchangers performance											
influer	ncing na	ramet	ers. lin	itations	Si oi comp	uet neut en	enungers, plu	te neur exenung	,ers, performance		
MOD	ULE-V			CON	DENSERS	S AND CO	OLING TO	WERS	10 Hrs		
Types	- Merits	and I	Demerit	s- Desi	gn of comp	act heat exe	changers, pla	te heat exchang	gers, performance		
influer	ncing pa	ramet	ers, lin	itations	с і 5.		0 1	c			
	01		-					Total Ho	ours 18 Hrs		
								10tal II	5013 40 1113		
ТЕХТ Р	BOOK										
1 Sodik	Kakaa	and U	onaton	T in "1	Ugat Excha	ngara Sala	otion" Dotin	a and Thormal	Design		
	$D_{max} \gamma$	302	ongtan	Liu, i	Teat Excila	lingers beier	tion, Rating	g and Therman	Design,		
CKC.	Press, 20	JUZ.									
2. Shah	,R. K., 1	Dušan	P. Sel	culic, "I	Fundamenta	als of heat	exchanger de	esign", John W	iley &		
Sons,20	03.										
REFER	RENCES	S:									
1. Kays, V.A. and London, A.L., "Compact Heat Exchangers", McGraw Hill, 1998.											
2. Kuppan, T, Macel Dekker, "Heat Exchanger Design Handbook" CRC Press ,June 2013											
3. Schunder E.U., "Heat Exchanger Design Hand Book", Hemisphere Pub, May 2015											
4. Donald Q Kern, "Process Heat transfer", McGraw Hill, 1983											

			NAR	AYANAE	NGINEER	INGCOLL	EGE:GUDUR		
			A	UTOMOBI	LE ENGINI	EERING	NECR	BTECH (R21)	
Semester	Hou	rs/ Week		Total hrs	Credits	Max Mark	s		
	L	Т	Р	-	С	CIE	SEE	TOTAL	
VII	3	0	0	48	3	40	60	100	
				COURSE	CONTEN	Γ			
MODULE- I		INTRO	DUCTI	ON TO VE C	CHICLE ST OMPONEN	TRUCTURI	E AND ENGIN	E 10 Hrs	
Vehicle constr	ucti	on - Chas	ssis and	body - Spe	ecifications	- Engine - T	Гуреs - Constru	ction - Location of	
engine - Cylin	der	arrangem	ent - Co	onstruction	details - Cyl	inder block	- Cylinder head	d - Cylinder liners -	
Piston - piston rings - Piston pin - Connecting rod - Crankshaft - Valves. Lubrication system - Types									
– Oil pumps - Filters. Crankcase ventilation.									
MODULE-II			IGNI	FION ANI) FUEL SU	PPLY SYS	TEMS	9 Hrs	
Ignition system	n -	Coil and	Magnet	o - Spark p	olug - Distri	butor – Ele	ctronic ignition	system - Fuel	
system -Carburetor - Fuel pumps - Fuel injection systems - Mono point and Multi point – Unit Injector –									
Nozzle types - Electronic Fuel Injection system (EFI) – GDI, MPFI, DTSI.									
MODULE-III STEERING AND SUSPENSION SYSTEM 10 Hrs									
Principle of steering - Steering Geometry and wheel alignment - Steering linkages - Steering gearboxes -									
Power steering - front axle - Suspension system - Independent and Solid axle - coil, leaf spring and air									
suspensions -	torsi	on bar - s	shock ab	sorbers.	-				
MODULE-IV	7		WHE	ELS, TYRF	ES AND BR	AKING SY	STEM	9 Hrs	
Wheels and T	yres	- Constr	ruction -	Type and	specificatio	n - Tyre we	ear and causes	- Brakes - Needs -	
Classification	–Dr	rum and l	Disc Me	echanical -	Hydraulic a	and pneuma	tic - Vacuum a	assist - Retarders -	
Anti- lock Bra	king	g System(ABS).						
MODULE-V	A	AUTOM	OBILE	ELECTRI	CAL SYST	EMS AND	ADVANCES	IN 10 Hrs	
			1	AUTOMO	BILE ENG	INEERING	T T		
Battery-Gener	al e	lectrical	circuits-	Active Su	spension S	ystem (ASS	S) - Electronic	Brake Distribution	
(EBD) – Elect	roni	c Stabilit	y Progra	ım(ESP), T	raction Con	trol System	(TCS) - Global	Positioning System	
(GPS), Hybrid	l veh	icle, Fuel	l Cell.						
							Total Ho	urs 48 Hrs	
TEXT BOOKS	•						10101110		
1. Kirpal	Sing	h. Autom	obile Ei	ngineering.	Vol.1&2. S	tandard Pub	lications, 13/e,	2020.	
2. William	.H.C	Crouse, A	utomoti	ve Mechani	ics, 10/e, M	cGraw-Hill	, 2006.		
3. David A	4. C	orolla, A	utomoti	ve Enginee	ring: Powe	rtrain, Chas	sis System and	l Vehicle Body,	
Butterworth-Heinemann Publishing Ltd, 2009.									
4. Richard	Sto	ne, Jeffre	y K. Bal	ll, Automot	ive Engineer	ring Fundan	nentals" SAE In	ternational, 2004	
·									

REFERENCES:

- 1. Bosch, Automotive Hand Book, 6/e, SAE Publications, 2007.
- 2. K. Newton and W. Steeds, The motor vehicle, 13/e, Butterworth-Heinemann Publishing Ltd, 1989.
- 3. Joseph Heitner, Automotive Mechanics Principles and Practices, 2/e, CBS publishing 2004.

	NARAYANAENGINEERINGCOLLEGE:GUDUR									
			Mar	ufacturing &	Inspectio	n of Gears	NEC	R BTECH (R21)		
Semester	Hours/	Week		Total hrs	Credits	Max Mark	KS			
	L	Т	Р		С	CIE	SEE	TOTAL		
VII	3	0	0	48	3	40	60	100		
				COURSE C	CONTEN			10.11		
MODULE- I		:finatio				O GEARS		10 Hrs		
Types of gears	s, class	mcatio	n, gea	r drawings, ge	ardoxes, a	ipplication	of gears, gear j	production methods,		
CFAR MATE	RIAT	S								
Non-metallic.	ferrou	s and	non-fe	rrous gears. I	Properties	of gear n	naterials, select	ion of material for		
typicalgears ar	nd appl	ications	s – bla	nk preparation	methods f	for differen	t gears, size, typ	be and material.		
						A DC				
MODULE-II				PRODUCTIC	DN OF GE		• .• • •	9 Hrs		
Gear milling d	ifferen	t gears,	cut qu	ality obtainab	le. Gear h	obbing, des	cription and op	eration of machine,		
shapers Produ	cut, II	obbilig of strai	abt b	s, work noidh evel gears an	d spiral of	s gear shap	ing generation	by straight bevel		
gear generator	Dupl	ex cutte	er stra	ight hevel gears	o spirar g	Sniral bey	vel gear generation	or		
MODULE-II	I	en cutt	<i>¹</i> , 5110	HEAT TREA	TMENT	OF GEAR	RS	10 Hrs		
Through harde	ning a	rase ha	rdenin	g flames hard	lening ind	luction har	dening of gears	Nitriding of gears		
Tuffriding of 9	ears I	nspectio	on of g	years for harde	ning defec	ts	defining of gears	, intriding of gears.		
CEAR FINIS	HINC	nopeetr	011 01 2		ining deree	co.				
Gear finishing advantages, finishing of gears by grinding shaving lapping honing methods and cold										
rolling of gears. Description of machines, process and process parameters										
MODULE-IV	7	-p		GEAR	INSPEC'	ΓΙΟΝ		9 Hrs		
Types of gear	errors,	gear qu	ality s	standards tooth	h thickness	and base t	angent length n	neasurement, pitch		
errors, radial	un ou	terrors	s, prof	ile errors, pitc	ch error m	easuremen	t. Composite er	rror measurement.		
Computerized	gear ir	spectio	on cent	ers. Reasons a	nd remedi	es for gear	errors			
			MOD				FILODE	10 11		
MODULE-V				EKN GEAK P	KODUC			IU Hrs		
Gear production	on by s	tampin	g, die	casting, power	r metal pro	methods sh	tion and compre	assion Moulding in		
– Gleason G-	isting, Frac G	colu all	eration	method	roduction	methous sn	lear speed shapi	ng. Gear broaching		
		car gen	cration	rmethod			Tetel II.	40 II.a		
	1						I otal Ho	ours 48 Hrs		
TEXT BOOKS	: Socia	ty of M	lamufa	aturina anaina	ana Caan	Drococcina	and Manufastu	mina" and 2		
1.	Edition	LY OL IV. n 1 0 8 4	lanula	cturing engine	ers, Gear	Processing	and Manufactu	ring, 2nd 5		
2	Honry	E Morr	it Goa	ronginooring	Wheelerr	ubliching A	Ulababad 1002			
۷.	пешу	L.IVIEIT	n,Gea	r engineering,	wileelei k	uunisinng,F	Allahabau,1992.			
REFERENCES	5:									
_			_							
1. Practical Gear design by Darle W. Dudley, McGraw-Hill book company										
2. Earle Bu	ickingh	am, An	alytica	al mechanics of	f gears, Do	ver publica	itions, New York	<, 1949.		

	NARAYANAENGINEERINGCOLLEGE:GUDUR									
]	INDUSTRIA	AL MANA	GEMENT	NECI	R BTECH (R21)		
Semester	Hou	rs/ Week		Total hrs	Credit	s Max Mark	KS			
	L	Т	Р		С	CIE	SEE	TOTAL		
VII	3	0	0	48	3	40	60	100		
				COURS	E CONTEN	T				
MODULE- I				BASICS	S OF MAN	AGEMENT		10 Hrs		
Introduction,	Defin	nition of	mana	igement, ch	aracteristic	s of manager	ment, functions	of management -		
Planning, Organising, Statting, Directing, Co-ordination, Controlling, Motivating, Communication,										
Decision Making, Principles of management – F.W.Taylor, HenryFayol, Elton Mayo, Administration										
and management, Nature of management, levels of management, managerial skills, managerial roles,										
Forms of Orga	anizai	tion- Line	e, Lin	ie –staffetc						
MODILE-II STRATEGIC MANAGEMENT Q Hrs										
Military origi	ins of	f strategy	/ – F	Evolution -	Concept a	nd Character	istics of strates	pic management –		
Defining strat	egy –	Mintzbe	ro's 5	P's of strate	eoneept a	rate Busines	s and Functiona	1 Levels of strategy		
- Strategic Ma	inage	ment Pro	cess.	Preparing ar	Environm	ental Threat a	and Opportunity	Profile (ETOP)		
- Strategie Management Process. Preparing an Environmental Phileat and Opportunity Prome (EPOP)										
MODULE-II	Ι			QUALI	TY MANA	GEMENT		10 Hrs		
Definition of quality, , continuous improvement definition of quality, types of quality - quality of										
design, conformance and performance, phases of quality management, Juran's and Demings view of										
quality, Quality Management Assistance Tools: Ishikawa diagram - Pareto Analysis - Poka Yoke										
(Mistake Proofing).quality circles, TQM, Kaizen, Five S (5S), Six sigma										
MODULE-IVHUMAN RESOURCE DEVELOPMENT9 Hrs										
Strategic im	porta	nce HR	M;	objectives	of HRM	; challenges	s to HR pr	ofessionals; role,		
Responsibiliti	es an	dcompet	encies	s of HR pro	ofessionals;	HR departn	nent operations;	Human Resource		
Planning -	objec	tives an	d pr	ocess; hum	an resour	ce informati	on system. T	alent acquisition;		
recruitment an	nd sel	ection str	ategie	es, careerpla	inning and i	management,	, training and de	evelopment.		
MODULE-V		1.1.0		AGEMEN	I INFORM	IATION SY	STEMS	10 Hrs		
Concept of da	ta an	d informa	tion,	characteristi	cs of inform	nation, types	of information,	Definition of MIS,		
Need, Purpos	e and	d Object	ves,	Contempora	ary Approa	ches to MIS	, Components	of an information		
system, Need	to st	udy infor	matio	on systems,	Classificati	on of information	ation systems, F	unctional Business		
systems – sale	es & i	narketing	, Hur	nan resource	es, accounti	ng, manufact	uring etc.			
							T (1)	40.11		
							Total Ho	ours 48 Hrs		
TEXT BOOKS	5:									
1. P. Khanna, "I	[ndus	trial Engi	neerir	ng and Mana	igement", I	Dhanpatrai pu	blications Ltd, N	New Delhi. 1966		
2. L.C.Jhamb,	Saviti	ri Jhamb	Indu	strial Manag	gement – I,	Everest Publ	lishing House .2	015		
REFERENCE	S:									
1. Dinesh Seth and Subhash C. Rastogi, "Global Management Solutions", Cengage										
Learning, Second Edition, USA.2009										
2. B. I	Davis	and Mar	grethe	e H. Olson, '	'Manageme	ent Informatio	on Systems", Mo	c-Graw-		
Hil	lInter	national l	Editio	ns.1985						

			N	ARAYANAE	NGINEE	RINGCO	LLEGE:GUDU	U R	
			COM	IPUTER AID	ED PROC	ESS	NEC	R BTECH (R21)	
a .		/ 33.7 1		PLANN	ING				
Semester	Hours	/ Week	D	Total hrs	Credits	Max Mark	S	TOTAL	
	L 2	1	P	10	2	CIE 40	SEE	101AL	
V11	3	U	0	HO COURSE C	р омтемт	40	00	100	
MODULE-I						ION		10 Hrs	
The Place of P	rocess	Planni	ng in the	- Manufacturi	ng cycle-F	rocess nlar	ning and produ	iction Planning-	
Processplannin	ng and	Concu	rrent En	gineering, CA	APP, Grou	p Technolo	gy.		
MODULE-II			PA	ART DESIGN	N REPRE	SENTATI	ON	9 Hrs	
Design Draft	ing-Di	mensio	ning-Co	onventional	Tolerance	- Geomet	ric Tolerance	-CAD-input/output	
devices- Topo	logy -	- Geon	netric tr	ansformation	-Perspectiv	ve transfor	mation-Data S	tructure-Geometric	
modeling for p	rocess	plannir	ng–GT (Coding-The O	PITZ syst	em-The M	ICLASS System	n.	
MODULE-II	I	PRO	CESS I	ENGINEERI	NG AND	PROCESS	S PLANNING	10 Hrs	
Experience b	ased	plannin	g-Decis	ion table an	d Decisio	on trees-Pi	rocess capabili	ty analysis-Process	
planning-Variant process planning-Generative approach-Forward and backward planning, Input format, AI.									
MODULE-IV	7	COM	IPUTE	R AIDED PR	OCESS F	LANNIN	G SYSTEMS	9 Hrs	
Logical Design of process planning- Implementation considerations-Manufacturing system components,									
Production Volume, No. of production families - CAM-I, CAPP, MIPLAN, APPAS, AUTOPLAN and									
PRO,CPPP.									
MODULE-V		I	NTEGI	RATED PRO	CESS PL	ANNING S	SYSTEMS	10 Hrs	
Totally integra	ated pr	ocess p	lanning	systems-An (Overview-	Modulus st	tructure-Data S	tructure-Operation-	
Report Genera	tion, I	Expert p	process j	planning					
							Total Ho	urs 48 Hrs	
TEXT BOOKS	5:								
1. Gideon	Halevi	i and Ro	oland D.	. Weill. "Princ	ciple of pro	ocess plann	ing- A Logical		
Approa	ch",Ch	apman	& Hall,	1995		I			
2. Chang systems	Г. С. & ",Pren	r Richar tice Ha	d A.Wy ll 1985	/sk, "An Intro	duction to	automated	process plannii	ng	
3. Chang,	T.C., "	'An Exp	oert Proo	cess Planning	System",	Prentice Ha	all, 1985		
REFERENCES	5:								
1. Nanua Singh Wiley & Sons	, "Syst 1996	tems Ap	oproach	to Computer	Integrated	Design and	d Manufacturing	g", John	
Rao P.N., "Com	puter A	Aided N	/lanufac	turing", Tata	McGraw I	Hill Publish	ing Co., 2000.		

NARAYANAENGINEERINGCOLLEGE:GUDUR										
			SMART MATERIALS NECR BTEC						ГЕСН (R21)	
Semester Hours/ Week Total hrs Credits Max Marks								TS		
		L	Т	Р		С	CIE	SEE	TOTAL	
VII		3	0	0	48	3	40	60	100	
COURSE CONTENT										
MODULE- I INTRODUCTION 10 Hrs										
Historical account of the discovery and development of smart materials, Two phases: Austenite and Martensite, Temperature induced phase changes, Shape memory effect, Pseudoelasticity, One-way shape memory effect, Two-way shape memory effect										
MO	DULE-II			PRO	OPERTIES	S OF SMAR	T MATER	IALS	9 Hrs	
Physical principles of optical, Electrical, Dielectric, Piezoelectric, Ferroelectric, Pyroelectric and Magneticproperties of smart materials										
MO	DULE-II	I		SY	NTHESIS	OF SMAR	T MATERI	ALS	10 Hrs	
Solid state reaction technique, Chemical route: Chemical vapour deposition, Sol-gel technique,										
Hydrothermal method, Co-precipitaiton. Green synthesis, Mechanical alloving and Thin film deposition										
techniques: Chemical etching, Sol-gel, spray pyrolysis										
MODULE-IV				СН	ARACTE	RIZATION	TECHNIQ	UES	9 Hrs	
X-ray diffraction, Raman spectroscopy (RS), Fourier-transform infrared reflection (FTIR), UV-Visible										
spectroscopy, Scanning electron microscopy (SEM), Transmission electron microscopy, Atomic force										
microscopy (AFM) and Differential Scanning Calorimetry (DSC).										
MO	DULE-V				MATER	IALS AND	DEVICES		10 Hrs	
Char	Characteristics of shape memory alloys, Magnetostrictive, Optoelectronic, Piezoelectric, Metamaterials,									
Electro-rheological and Magneto-rheological materials and Composite materials.										
Devices based on smart materials: Sensors & Actuators, MEMS and intelligent devices, Future scope of										
thesmart materials.										
								Total Ho	ours 48 Hrs	
ТЕХТ	BOOKS	:								
1.	1. Encyclopaedia of Smart Materials- Mel Schwartz, John Wiley & Sons, Inc 2002									
 Smart Materials and Structures - M. V. Gandhi and B.S. Thompson, Champman and Hall, 1992 										
REFE	RENCES	5:								
1.	1. Smart Materials and Technologies- M. Addington and D. L. Schodek, , Elsevier, 2005.									
2.	2. Characterization and Application of smart Materials -R. Rai, Synthesis, , Nova Science, 2011.									

3. Electroceramics: Materials, Properties, Applications -A.J. Moulson and J.M. Herbert, 2nd Edn., JohnWiley & Sons, 2003.